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1 Executive Summary

The use of Robotics and Autonomous Systems (RAS) in agriculture is an emerging area which can significantly
improve the food production sector in the UK. The aim of the MeSAPro project is to lay down the basic require-
ments for using RAS in soft fruit production from the perspective of ensuring system safety during Human-robot
interaction (HRI). Thus, in this document, we provide some guidelines from our work so far, addressing aspects of
occupational health (which deals with assuring both physical and mental welfare) in scenarios where agricultural
robots are intended to share the workspace with people in the near future. The objectives met by the MeSAPro
project are listed below. The work carried out and results achieved under each of them are described in the sections
below.

• Definition of scenarios: A total of four representative agricultural scenarios were covered in this project
including: plant treatment using UV-C light, data gathering using a mobile robotic platform, automatic fruit
picking, and robot-assisted harvesting using robots for transportation purposes.

• Hazard analysis and mitigation strategies: A hazard analysis was performed for the four scenarios studied.
Failure modes were identified and general safety policies were defined. A three-layered safety architecture
was proposed to tackle the hazards/failures.

• Formal verification: The HRIs present within the four scenarios were translated into a mathematical rep-
resentation in order to perform a formal verification based on probabilistic model checking. The model
checking analysis focused on quantifying the probabilities of producing human injuries when the proposed
hazard mitigation strategies are applied under failure modes.

• Integration and evaluation: The proposed mitigation strategies were integrated into a commercial agricul-
tural robot. The robot-assisted harvesting scenario was chosen as case study to test the robot safety opera-
tion. An user experience assessment was carried out in order to determine qualitatively and quantitatively
the safety and trust perception.

2 Definition of Scenarios

Figure 1 gives a schematic of the overall structure of the kind of soft-fruit (strawberry) farm in which the robots
will operate. There are three main locations that concern us. The polytunnels are the main focus of the work of
the robots. The Figure 1 shows one set of polytunnels, in reality a farm may contain multiple sets of polytunnels,
and these may be located in non-contiguous areas. The other locations on the farm are the robot shed and the
collection point. The shed is where the robots are located when not in use, where they recharge, and where they
are serviced. The collection point1 is, as the name suggests, where the fruit is collected. As we will see below, in
different scenarios, the robots traverse footpaths to move between various of these different locations. The final
location of interest is the control centre. This is a remote location from which we envisage that the robots will be
monitored during operations.

1The fruit will often be moved to a packhouse for packaging and storage until the fruit leaves the farm. However, there is typically one
packhouse which is near the main farm buildings. In an individual field the fruit will first be amassed at a collection point from which it will
be driven to the packhouse. Since this journey will often be over public roads, we do not consider it to be part of the world in which the robots
operate.
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Figure 1: The major elements of a farm on which the scenarios are set.

2.1 Scenario Description

Based on the farm structure mentioned above, we studied four scenarios that are typical of current and projected
future use of robotic platforms such as Thorvald II [14] in soft fruit production. A description of each scenario is
given as follows:

• UV-C Treatment scenario: In commercial growing operations, plants are typically sprayed with various
pesticides in order to keep diseases, such as powdery mildew, at bay. However, with a growing interest
in reducing the use of chemicals, there is interest in using robots that can treat strawberry crops with UV-
C light which has been demonstrated to be effective against powdery mildew [15]. The Thorvald II robot
configuration used during the UV-C treatment is presented in Fig.2(b), where the robot is moving along
the rows and straddles the tables on which the strawberries grow so that the UV-C emissions are directed
inwards. The UV-C dose is carefully calibrated to not damage the strawberry plants but it can harm any
other living thing that come closer than 7m to the robot. Thus, it is mandatory to restrict the access to the
polytunnels during UV-C treatment. However, it is always possible that untrained people decide to come
close to the robot to have a look, or accidentally finds themselves too close to the robot. For these unplanned
HRIs it is crucial that the robot safety system can get an early human detection in order to alert the human
of the danger and stop UV-C operations immediately.

• Picking scenario: The picking refers to the scenario when a harvesting robot performs automatic picking
operations. In this scenario, the robot is moving slowly along the rows while a manipulator on it is picking
the fruits and placing them on the trays. During this operation, the Thorvald II robot uses the same config-
uration showed in Fig.2(a) (i.e it is moving between the crop rows), but the harvesting platform includes a
robotic manipulator which perform the picking task. Since the current harvesting robots do not have good
enough harvesting rates to be an efficient solution on their own, then the harvesting operations still require
human pickers. Thus, similar than the logistics scenario (see below), in the picking scenario the robots share
the workspace with humans but unlike the logistics scenario, they do not require human interaction during
the picking process to accomplish their tasks. The only situation when robots require a human interaction is
for loading/unloading of trays of harvested fruit at collection points. Thus, we can treat this scenario as a
complementary operation to the logistics scenario.

• Logistics scenario: We use the term logistics to refer to scenario in which a service robot assists human
pickers in transporting fruit that has been picked, allowing human pickers to concentrate on picking fruit.
As in a traditional picking operation, human pickers remove the fruit from the plant and place them in small
containers, the punnets that are familiar from the supermarket. These containers are then placed in larger
trays. The picker works with a given tray until it is full, and then summons a robot. The full tray is placed
on the robot, which also brings a new tray, and the robot then leaves the current picker location, moves to
the end of the row of plants, and waits there until a new picker summons it. When the robot is fully loaded,
it transports the full trays to the collection point. To do this the robot has to navigate along paths outside the
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polytunnel. The Thorvald II robot configuration used during the logistics is presented in Fig. 2(a) where it
can be seen that the robot moves between the crop rows transporting trays with fruits.

• Scouting scenario: The term scouting refers to the scenario when the robot operates in autonomous way,
following a predefined pattern inside the polytunnel, in which the fruit is typically grown in the UK, in
order to collect data about the crop. For example, the robot may count fruit in order to make yield forecasts.
The robot can traverse the polytunnel using: i) the same configuration and pattern as for UV-C application
(allowing each plant to be imaged from both sides simultaneously, or ii) using the same configuration and
pattern as for harvesting operations (imaging the plants from one side at a time. Currently, scouting is
performed using a robot in the UV-C treatment configuration. Typically, the data collection is an independent
task, however, it is possible to perform the data collection in parallel with the picking or logistics operations.
The latter means that from a safety perspective, the scouting scenario does not introduce hazards that aren’t
already covered by the other scenarios. For this reason, in the following sections, we will only deal with
UV-C treatment, picking, and logistics operations.

(a) (b)

Figure 2: The Thorvald II configuration used to: (a) perform logistics and picking during fruit harvesting opera-
tions; and (b) perform the UV-C treatment and crop monitoring.

Table 1 summarizes the four scenarios covered by the MeSAPro project, pointing the actor or actors who are
assumed to perform the tasks and the level of interaction between them (if it is the case). According to this table,
it is assumed that the UV-C treatment and the scouting scenarios are performed by the robots without human
interaction, the picking scenario requires the robots sharing the work space with human pickers and the logistics
requires a higher level of coordination between pickers and robots, i.e. planned HRIs. However, the assumption
of having only planned HRIs cannot be guaranteed in practice since untrained people may approach the robots
during their operations. This can happen because, unlike the case of industrial robots, robots used in agriculture
operate in the open, and the farms on which they are based are often traversed by public rights of way — see [26]
for examples on one of our partner farms. These kinds of unexpected situations also called failure modes make it
necessary to perform a hazard analysis to determine the effects of potential failures and ways to mitigate them.

Table 1: List of agricultural scenarios studied in MeSAPro with the corresponding interaction level between the
robots and the human workers.

Scenario Actors Interaction level

Human Robot unshared
workspace

shared
workspace

cooperative
co-work

UV-C treatment X X
Scouting X X
Picking X X X

Logistics X X X X
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2.2 Initial assumptions

To complement the descriptions given in Subsection 2.1, we defined various operational assumption for each of
the four defined scenarios. These assumptions are based on current farm and operational settings. Some of these
assumptions are valid for a single scenario but others of them cover more than one at a time.

2.2.1 General assumptions

A-G1 It is assumed the working staff are well trained and aware of how the robot behaves according to each kind
of operation mode.

A-G2 The robot maximum speed is restricted according to the operation mode and the workspace (inside polytun-
nels or on footpaths). It is assumed that for all the scenarios which require the robot operates along footpaths,
the maximum robot speed is 1 m/s.

A-G3 During close HRIs, the robot is allowed to move next to a human while staying within the so-called social
zone (from 1.2m to 3.6m) or public zone (above 3.6m) defined in [28]. The personal or intimate zones (less
than 1.2m) are not considered admissible for a safe and sociable acceptable navigation since it is likely to get
injuries product of collisions within these zones.

A-G4 The robot is supposed to be equipped with the necessary sensors to detect the human presence (e.g. LiDARs,
RGB-D cameras) and the necessary hardware to send audiovisual messages that can be interpreted by the
human workers (e.g. speakers and colored beacons).

2.2.2 Assumptions for logistics and picking scenarios

A-LP1 In logistics operations, the pickers can summon a robot from any point in polytunnels to pick full trays.
Thus, it is assumed that the robot is capable of locating the picker based on GNSS information, and when the
robot is getting closer to the picker, the localization and tracking rely on LiDAR/camera readings.

A-LP2 The robot payload capacity is limited, meaning it requires at least one trip to the collection point to unload
the fruit and replace the full trays with empty ones.

A-LP3 There is at least a collection point strategically located in a central point with respect to all polytunnels. This
collection point is where the harvested fruit is collected before trolleys transport it to the food handling point
where the fruit will be cleaned, packed, and refrigerated before it is sent off to the markets.

A-LP4 There may be robots doing logistics tasks (i.e. summoned by pickers to transport fruit) sharing the workspace
with the robots which perform specific picking tasks.

A-LP5 During the picking mode operation, the robot is largely stationary (less than 0.1 m/s), only moving a few cen-
timeters between two plants after it has picked all the reachable ripe fruit on the first. During logistics mode,
the robot can move up to 0.5 m/s inside the polytunnel, while the maximum speed outside the polytunnels
is restricted according to A-G2.

2.2.3 Assumptions for UV-C treatment scenario

A-U1 The UV-C treatment is carried out at night. This is done because mildew is more vulnerable to UV-C treat-
ment at night. However, it also has the advantage that it minimises the chance that the robot comes into
contact with any people.

A-U2 UV-C light is only used when the robot is in the polytunnels.

A-U3 It is assumed that there will be no workers (trained people) at polytunnels when UV-C treatment is being
performed.

A-U4 The safety minimum distance to avoid human injuries during UV-C light emissions is 7m (within the public
zone).
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2.2.4 Assumptions for Scouting scenario

A-S1 For this analysis, data collection is considered to be performed as a primary task. In other words, we are
not considering scouting being combined with picking or logistics operations. Thus, similar to the UV-C
treatment scenario (A-U3), scouting is assumed to be performed without sharing the workspace with human
workers in the polytunnel, but unlike the UV-C treatment, in this application the minimum distance required
to ensure a safe interaction is not restricted by 7m as in the UV-C treatment (A-U4).

A-S2 During data collection, the robot moves relatively slowly having a maximum speed of 0.5 m/s inside the
polytunnels.

2.3 Robot Operation Modes

Before start identifying the potential hazards, we have to define a list of the most relevant operations that the robot
will perform based on the scenario descriptions in Subsection 2.1. Since some robot operations are the same in
several scenarios, the potential failure modes derived from these situations will be repeated in several scenarios.
Thus, we first describe the operations that overlap more than one scenario, and then only mention them in the
scenarios where they are repeated.

2.3.1 General Operations

The robot operations which differentiate each scenario from another are performed inside polytunnels. However,
all the scenarios requires the robot to perform operations outside the polytunnels while they are moving along
footpaths to any component of the scheme in Fig. 1. The two main operations which summarize these overlapping
situations outside the polytunnels are listed below.

O-G1 Robot moving between shed and polytunnels: In all scenarios, the robot will move between shed and
polytunnel. For most scenarios a typical robot “shift” will involve the robot leaving the shed/charging
station, moving to a polytunnel, carrying out its scenario-specific operations, and then returning to the shed
to charge or at end of the day.

O-G2 Robot moving between polytunnels: In a large-scale agricultural environment, the robot usually completes
the task given in one polytunnel and then moves to another. While we distinguish the case for completeness,
the hazards are the same as in case O-G1 , and so we only deal with O-G1 from here on.

O-G3 Robot moving between polytunnels and collection point: In logistics support the robot will frequently
move between the polytunnel and collection point to unload full trays and replace with empty ones. Similar
to O-G2, while we distinguish the case for completeness, the hazards are the same as in case O-G1, and so
we only deal with O-G1 from here on.

Thus, despite the differences between movements in these three cases, we consider all of the movements outside
the polytunnel to be equivalent from the perspective of safety considerations.

2.3.2 Logistics and Picking Operations

Since the logistics and picking scenarios correspond both to harvesting operations. The robot operations in these
scenarios are expected to overlap. For instance, when a robot is performing picking tasks, we can think of it
working in two modes: logistics mode and picking mode. The picking mode refers to the behavior when the robot
is navigating along the rows at a very low speed in order to collect the fruit autonomously. The logistics mode
refers to a similar behaviour that the robot has in a logistics scenario, specifically when the robot navigates through
the polytunnels with the objective of transporting full containers to the collection point and replacing them with
empty ones. A picking robot will therefore perform all the same operations as a logistics robot and have all the
same failure modes, in addition to the operations and failure modes from the picking mode. In this context, the
robots operations during the harvesting can be split into four main operations. The first operation is O-G1 which
overlaps with all the scenarios. The next two operations (O-L1 and O-L2) are typical for logistics but also overlap
with picking scenario, and the remaining operation O-P1 is unique for robots performing picking tasks.
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O-L1 Planned interactions with workers to load/unload trays at polytunnels and/or collection point: This robot
operation refers to the cases when the robot is required to interact with a human workers at the collection
point or with pickers inside the polytunnel. In both, picking and logistics scenarios, the interaction with
workers at the collection point is expected. However, in case of interaction with pickers in the polytunnels,
it is only mandatory for the logistics scenario, but is not required for the picking scenario. In these planned
interactions is necessary for the robot to detect and track humans precisely and stop at a safe distance from
workers (restricted by A-G3). Moreover it is important to communicate the robot intentions to the human
and make the robot know about the human intentions to avoid inefficient stops each time a human is de-
tected.

O-L2 Robot in logistics mode moving inside the polytunnel: This operation refers the robot moving inside the
polytunnel while transporting empty trays from collection point to an specific point at the polytunnel and/or
when transporting filled trays from polytunnels to collection point. This operation covers the cases when the
robot moves along the rows and it is performing transitions between rows. Since the robot is sharing the
workspace with multiple pickers, it is expected to have unplanned interactions during robot navigation.
These unplanned interactions are especially critical at the end of the rows because of the lack of visibility of
pickers to the robot. Note that the robots do not typically turn at the end of the rows — since the robot is
holonomic, it is typically easier and quicker for the robot to move sideways at the end of the rows when it
moves between them. During this maneuver, if a worker is approaching to the robot laterally (that is from
the side), the crop may occlude them from the perspective of the robot, and that occlusion may mean that
the sensors (which only point forward) do not detect the human presence in time.

O-P1 Robot in picking mode moving inside the polytunnel: This operation is performed by the robot when it is
moving inside the polytunnel and there is still payload capacity to place fruit on it. During this operation the
robot is moving slowly (according to A-LP5) while the robot manipulator is picking the fruit and placing it on
the trays. The robot may find human pickers approaching its location. The robot policy when a HRI happens
depends on what it infers the human’s intentions to be. If the robot infers that the human is approaching to
unload fruit on it, then the robot must stop until the picker is far enough away that it can continue moving.
If the robot infers that the human is also picking, then the robot can continue working but needs to keep
audiovisual alerts2 activated to let the picker know about the robot’s intentions.

2.3.3 UV-C Treatment Operations

During the UV-C treatment, the robot behaviours can be reduced into two main operations. The first operation is
the general O-G1 expected for all the scenarios, and the second is described below:

O-U1 Robot performing UV-C treatment inside the polytunnel: This operation refers to the robot following a
predefined path while applying UV-C on the crop. During UV-C treatment the robot is continuously mon-
itoring for human presence. If a human is detected more than 7m away, human injuries can be avoided by
the robot stopping operations completely3 and turning on audiovisual alerts to inform the human about the
danger. However, the robot may fail to detect the human presence even if the human approaches within
7m. This risky situation may happen when a human located at the end of the rows is occluded by the crop
even if the robot can easily detect a human 7m away when they are not occluded. Since UV-C treatment is
performed at night time, the robot is very visible during treatment as UV-C light is very prominent and can
be noticed from a long distance away.

2.3.4 Scouting operations

Similar to the UV-C treatment scenario, in the scouting scenario robot behaviour can be summarized in terms of
two main operations. The general operation outside the polytunnel O-G1 and the operation inside the polytunnels
described as follows:

O-S1 Robot collecting data while moving inside the polytunnel: During this operation the robot is moving
relatively slowly, following a pre-defined path while the visual sensors are taking data from the crops. It

2For the hazard analysis it was assumed that the robot is equipped with speakers and colored beacons which are used as a audiovisual
feedback system to let the human know about the robot’s intentions and potential hazards of approaching. The robot was subsequently
equipped with these elements.

3The UV-C treatment is halted both to avoid hurting the human if they approach closer, but also to avoid damaging the crop.
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is assumed that polytunnel access is restricted during this operation, meaning HRIs are not likely to occur.
However in case that a human is detected by the robot, the robot should decide whether to continue working
(but keeping active audiovisual alerts to let the human know about the robot intentions) or stop operations
until the human moves back. Thus, this robot operation can be seen as a variation of the O-P1 operation,
where the differences are in the robot speed while performing each task and that during O-P1 the unplanned
interactions include trained pickers while in O-S1 the unplanned interactions are expected to be only with
untrained people.

3 Hazard Mitigation Strategies

This section provides a hazard identification for the four scenarios described in Section 2. The analysis identifies a
list of potential failures which we then examine to provide strategies that can mitigate the negative effects of these
failures.

3.1 Risk assessment metrics

To assess the risk of each hazard consequence identified during hazard analysis, we will follow the guidelines
given by the authors of [32] who presented a qualitative risk classification matrix based on the example presented
in the safety standard IEC 61508 ‘Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems’ (International Electro-technical Commission, 2000). This classification matrix is presented in
Table 2. The matrix is organized into a series of columns, which define the hazard consequence severity, and
rows denoting the frequency that the hazard could occur. Where a row and column intersect determines the risk
class. Four risk classes are possible, from the most severe (Class I) to the least severe (Class IV). The process of
assigning risks classes involves examining each hazard identified during hazard analysis and determining both
the frequency with which the hazard is likely to occur and the severity of the consequences associated with the
hazard. If the risk class is found to be either Class I (intolerable) or Class II (undesirable), then a safety requirement
must be produced, which details how the risk will be reduced to Class IV (negligible) or Class III (tolerable).

Table 2: Risk classification based on occurrence and severity criteria (see [32]).

Ocurrence Severity
Catastrophic Critical Marginal Negligible

Frequent I I I II
Probable I I II III
Occasional I II III III
Remote II III III IV
Improbable III III IV IV
Incredible IV IV IV IV

3.2 Hazard identification

The hazard identification is summarized in Table 3. As this Table shows, for each of the robot operations described
in the previous subsection, the possible situations that are expected to occur in terms of HRI are listed. Then, for
each situation, the potential failures were identified, concluding that there are a total of 10 failures to be analysed.
Seven failures are generic failures which can happen in different operation modes, and the remaining three are
unique for logistics and UV-C treatment operations. Given this base, the following analysis will discuss each of
the these 10 failures pointing their potential severity and expected occurrence probability according to the specific
situation.

3.2.1 Robot fails to detect physical contact with human (F-G1)

This failure mode can happen in every operation mode where the HRI drives to a collision risk (O-U1 is not
included). Thus, the robot must be equipped with sensors which enhance safety and intuitiveness of physical
HRIs for both intentional and unintentional contacts. In the unfortunate case of imminent contact either by robot
failures or human mistakes, the sensors can be used to trigger an safety stop which stops the robot immediately
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Table 3: Hazard identification during the four scenarios studied.

Operation
Code

Possible
situations

Failure
Code

Possible
failures

Potential
effect Consequence Potential

severity
Expected

occurrence
Risk
level

O-G1
O-L1
O-L2
O-P1
O-S1

Imminent collision is
about to happen F-G1 Robot fails to detect

contact with human
Robot keep moving

after collision
Human is

getting injured critical remote III

A worker occluding
the robot way

F-G2 Robot fails to detect
the human above 3.6 m

Audiovisual alerts are not
activated and then

worker is not getting
aware of the robot

presence

Loss of efficiency
due to excessive

robot pauses
and potential

human injuries

marginal remote III

F-G3 Robot is not visible to
the human

Human is not aware of
the robot approaching

Potential human
injuries critical remote III

O-G1
O-L1
O-U1
O-S1

Untrained human
approaching to the

robot with the
audiovisual

alerts activated

F-G4

Human can not
interpret the
audiovisual

alerts

Robot requires to
pause operations
till the human get

out of the robot way

Loss of efficiency
due to prolonged

robot pauses
and potential

human injuries

critical remote III

O-L2
O-S1

Robot at the end of
the rows when a

worker is approaching
laterally

F-G5

Robot detects the human
only when they are

too close
(less than 3.6 m)

Robot and worker are
not aware each other

presence on time

Potential human
injuries due to

collisions
critical probable I

F-G2 Robot fails to detect
the human above 3.6 m

Audiovisual alerts are not
activated and then

worker is not getting
aware of the robot

presence

Loss of efficiency
due to excessive

robot pauses
and potential

human injuries

marginal occasional III

O-G1 Robot tries to
evade a human

on its way

F-G6
Robot fails to

predict human
motion or intentions

Robot collides with
the human

or
pause operations

unnecessarily

Loss of efficiency
due to excessive

robot pauses
and potential

human injuries

critical occasional II

F-G7
Robot fails to

track accurately
the human position

O-L1

Robot detects more
than one human
in the same row

F-L1

Robot fails to
distinguish which
human detected

was the one
who summoned it

Robot try to approach
to the incorrect worker

Loss of efficiency
due to unnecessary

pauses and
potential human

injuries

critical occasional II

Robot starts reducing
speed to finally stop
next to the worker

F-G6
Robot fails to

predict human
motion or intentions

Robot fails to
stop safely
1 m from

the worker

Potential human
injures critical occasional II

F-G7
Robot fails to

track accurately
the human position

O-P1
O-L1

Picker approaching to
the robot to place filled
trays on it and replace

with empty ones

F-G6
Robot fails to

predict human
motion or intentions

Human and robot
collides with
a low speed

Potential human
injures marginal occasional III

O-U1
Robot moving along a
row while a human is
approaching frontally

F-U1 Robot fails to detect
the human above 7 m

Audiovisual alerts are not
activated and then

worker is not getting
aware of danger

Potential human
injuries due to

UV-C light
critical occasional II

F-U2

Robot fails to detect
on time when a
human is within

7 m

Safety stop is
not activated and then

robot keep using
UV-C light

Human is
getting injured

by the UV-C light
critical remote III

Robot at the end of
the rows when a

worker is approaching
laterally

F-G5

Robot detects the human
only when they are

too close
(less than 3.6 m)

Robot stop using
UV-C light too late

Human is
getting injured

by the UV-C light
critical probable I

after an anomaly is detected. Human injury is not expected to be completely prevented by applying this safety
stop, but at least the severity can be reduced. On the other hand, in the hypothetical case that the robot is not able
to detect contact with a human during a collision, the robot directive will be keep moving, and then the severity
of the human injuries is critical. The probability of occurrence of this kind of failure depends on the type of sensor
implemented on the robot. A solution can be the use of sensorized flexible skin that could be mounted on strategic
areas of the robot structure to detect pressure changes4. However since the impact can happen on an uncovered
part of the robot, an alternative solution can be the use of force sensors attached to the robot actuators in order to
detect any change in torque signal. Thus, by using a combination of these solutions, the occurrence of safety stop
failure may be reduced to remote.

4This was one of the modifications that we subsequently made to the Thirvald robot that we were using for MeSAPro.
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3.2.2 Robot fails to detect the human more than 3.6 m away (F-G2)

This failure can happen when the robot is operating inside and outside polytunnels. There are two possible situa-
tions, when the robot is approaching a human who was standing in the robot’s path or when a human is approach-
ing to the robot position. In both unplanned interactions, if the robot is not able to detect a human more than 3.6
m away, then no audiovisual alert is activated in time to ensure the human is aware of the robot’s presence and
intentions. This means, the human will not move away, or will keep approaching the robot, provoking the robot to
trigger a safety stop to keep itself 3.6 m from the human. If this kind of unplanned HRI happens frequently, then
the robot pauses may case a loss of efficiency in terms of robot usage and time wasted. Moreover if the human
is still approaching to the robot and the robot fails to immediately cease operation, this could drive to a potential
collision and consequently human injuries (specially outside polytunnels). To reduce the excessive waste of time
during robot safety stops, the robot should be able to predict the human’s intentions, and in case the human is
mostly stationary, then the robot may be able to perform evasion maneuvers and continue its navigation. This
alternative is only feasible on paths outside the polytunnels since inside polytunnels, the narrow space restricts
any potential evasion maneuvers.

Since time spent and operational efficiency are not the main target of hazard analysis, the severity of this failure
was assigned marginal considering that there is still an indirect collision risk. On the other hand, the occurrence
probability depends on two factors: the reliability of the Human Detection System (HDS) and occlusion in the
environment. For the moment, based on preliminary results of a LiDAR based HDS, the failure occurrence was
assigned as occasional inside the polytunnel, and remote outside the polytunnels. This classification can be updated
and improved after further tests.

3.2.3 Robot is not visible to the human (F-G3)

This failure was mainly derived from the scenario when the robot travels from the shed to a polytunnel at night to
perform UV-C treatment. The robot visibility in polytunnels is ensured by the visible light emitted during UV-C
treatment. However while the robot is moving outside, the robot is not performing any UV-C treatment, then
another source of light is required to ensure the robot visibility to humans. Moreover, visibility is also an issue in
the remaining scenarios, even though the robot operates during the day. This is because in a polytunnel, the robot
may easily get into a position where the human workers are not able to see it — the robot may be ahead of them
but out of their of line of sight (which tends to be focused on the plant to either side), or behind them. as a result,
If the robot fails to continuously signal its presence, the human picker may easily collide with the robot. Because
the kind of collision that may happen — when a human picker, for example, steps back into a stationary robot —
the result of this failure may not result in injury but we still need to consider it. Therefore, considering the risky
situations at night and during the day, this failure was placed in risk level III with a critical severity and a remote
probability of occurrence.

3.2.4 Human can not interpret the audiovisual alerts (F-G4)

According to assumption A-U3, the farm, and especially the polytunnels, are considered closed areas where any
unauthorized access is not allowed. However, in reality it is likely that there would be visitors who can be in-
terested to take a closer look at robot operations, or people who have strayed off a footpath through the farm.
These people will not have been trained, meaning they do not know about the potential hazards of approaching
to the machinery and they will not be familiar with the robot behaviours according to the specific operations. For
instance, for a robot in logistics mode, the directive when any unexpected human is detected closely is to pause
operation until the human is far enough away for the robot to continue on its route. To avoid a long pause period,
the robot uses audiovisual alerts to make people know that they are blocking its way. However since a non trained
person is not familiar with these kind of alerts, they could stay longer occluding the robot provoking a loss of
efficiency in terms of time spent. In case a robot is in picking mode the robot can continue working since the robot
speed while picking is very slow. In this case the severity of the pauses is almost negligible. On the other hand,
during UV-C treatment, since robot alerts are meaningless for this person, then the human may decide to keep
approaching the robot and receive skin injuries.

Thus, assuming that the staff on the farm restrict the access to the polytunnels as much as they can (to satisfy
the assumption A-U3), then, the chances of having unplanned interaction with untrained people can categorized
as remote. Despite the failure being remote, the severity of its effects can be critical in the sense of loss of efficiency
and human damage (specially during O-U1), that is the reason for classifying it as risk level III.
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3.2.5 Robot detects the human only when they are too close (F-G5)

In certain situations, it can often happen that the robot becomes aware of the human presence only when it is very
close (within the social zone according to A-G3), which does not give the robot time to take preventive action. In
this context, this failure is similar to failure F-G2, where, according to the capability of the perception sensors and
the occlusion from the environment, the maximum distance at which the perception system can detect a person
will be affected. Occlusion by crops is a common problem during operations inside the polytunnel, and that’s why
this failure is categorized as probable. Moreover, the limited field of view of sensors at the end of a row when a
human is approaching laterally means that this failure is considered as critical (because of the possibility of harm
in this situation) for O-L2 and O-S1 operations making it a potential collision risk of level II. However, a higher
risk level is expected during operation O-U1 where the severity of the human injuries is categorized as critical.

3.2.6 Robot fails to predict human motion or intentions (F-G6)

The prediction of the future trajectory of humans is an essential component to plan safe and efficient movements
of the robot. The accuracy of trajectory prediction is very important from a safety perspective to keep the robot
away from the human within a safe distance. Moreover, in the case of planned interactions during load/unload
of trays the human motion prediction is especially useful to determine when to start approaching the worker and
when to stop. From a safety perspective, the robot’s directive should be to not move if the human is tended to
approach the robot. Thus, during unplanned interactions at footpaths, if the robot determines that the human
tends to stay stationary, then the robot may perform evasion maneuvers to avoid unnecessary stops, which may
affect the overall efficiency of the robot operations. However, if the robot is unable to correctly predict human
trajectory (because of random human behavior or unreliable HDS readings), this may result in unnecessary stops
or unwanted collisions. The severity of potential collisions depends on the speed of the robot during the close
interactions. Since a robot in picking mode (O-P1) is allowed a maximum speed of less than 0.1 m, then the
severity of the collision is assumed to be marginal. On the other hand, during robot operations O-L1 and O-G1,
the robot can move up to 0.5 m/s inside the polytunnels and 1 m/s (according to A-LP5), meaning the potential
human injuries can be treated as critical. Due to the complexity of developing a trustworthy human prediction
system, the occurrence of a failure in prediction was set as occasional which mostly depends on the randomness of
human behavior and the input information given by the HDS.

3.2.7 Robot fails to accurately track human position (F-G7)

It is possible that the HDS fails in certain scenarios due to the complexity of distinguishing between environmental
features and human features. In this context, false positive or false negative readings can provoke a mismatch
between the actual human position with the position perceived by the robot. Thus, accurate human position
estimation is a mandatory requirement during close interactions which require the robot to maintain a safety
distance of 1.2m from the workers. Moreover, once a human is detected, the robot starts tracking this person in
order to use the historical motion data as an input to the human prediction system mentioned in failure F-G6, to
infer if the human is going to keep stationary or if they intend to move. In other words, this failure overlaps the
operations O-G1 and O-L1 which were also affected by the failure F-G6. Thus, as was explained for F-G6, the
severity of potential human injuries is categorized as critical with an occurrence described as occasional.

3.2.8 Robot fails to distinguish whether human detected was the one who summoned it (F-L1)

This failure is derived from the operation O-L1 when the robot is in logistics mode transporting empty trays to the
picker who summoned it. Let’s assume the hypothetical scenario where more than one picker is working in the
same row, or both are working in consecutive rows at the same time. In these scenarios, the HDS detects both
pickers and somehow infer which of them was the one who summoned it. Once the correct picker is chosen,
the robot tracks them in order to keep a safe distance of 1.2m. The problem in this situation is that the inference
of which human is the one who summoned the robot is not an easy task, and can not be solved by using only
LiDAR-based approaches. Complimentary hardware should be incorporated into the robot perception system
in order to perceive messages from human workers. These messages help the robot to decide which human it
should approach in order to avoid waste time waiting for actions from the picker who did not call the robot. The
messages can be sent verbally if the robot has the capability of understanding specific words. Another alternative
is to use non-verbal communication such as hand gestures where the robot must have the capability to interpret
their meaning. According to the Table. 3 this failure was assigned a critical severity category since the loss of
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efficiency during pauses is not the only consequence. The incorrect selection of picker may drive to collision risk
since the incorrect human picker was not aware of the robot’s intentions to approach him, so, if the robot approach
from behind the picker, any sudden movement may provoke a collision.

3.2.9 Robot fails to detect the human more than 7m away (F-U1)

This is a failure derived from operation O-U1. After the analysis of the previous failures modes, it is clear that the
HDS is the most important component of the robot safety system for all of the four scenarios. In the case of close
planned interaction during harvesting operations, the HDS should ensure an accurate human posture estimation
to avoid getting closer than the minimum safety distance allowed. However, for UV-C treatment scenario, the
accuracy in posture estimation is not as important as reliability in terms of false negatives and false positives for
detection. In other words, it is preferred than the robot can detect a human at a long distance than to accurately
track them at a shorter distance. The latter is because if the human is detected more 7m away, it is possible to avoid
human injuries by stopping operation immediately, however if the robot is only able to detect people when they
are already within 7m, the human will probably be injured. The severity of this failure was considered as critical
and according to the current performance of our LiDAR based HDS, the occurrence of a false negative detection
above 7m is occasional.

3.2.10 Robot fails to detect when a human is 7m away in a timely manner (F-U2)

This failure follows the line of the failure F-U1. In this case the robot was not able to detect the presence of a human
that is close to the minimum distance away in time, and so is only aware of human presence when the human is
already within the dangerous distance from the robot. The consequences of this failure are critical but unlike the
failure F-U1, the occurrence is considered as remote, at least for the situations when the human is approaching
frontally to the robot, based on the performance of the HDS . The situation when a human is approaching laterally
at the end of the rows are not considered for this failure, since these situations were already covered in failure
F-G5.

3.3 Safety Requirements

According to the descriptions of the agricultural scenarios given above, the safety system implemented in agricul-
tural robots such as the Thorvald II should include at least the following components:

SR-1 Audiovisual Feedback Alert System (AVFAS): The robots must be equipped with colored beacons and speak-
ers to periodically or explicitly inform people of the current robot’s behavior/intentions [1].

SR-2 Human Detection System (HDS): The robots must be equipped with sensors such as LiDARs, RBG-D Cam-
eras or IR Cameras that allow it to detect people in a range above 7m (necessary in the UV-C treatment)
[17].

SR-3 Human Tracking and Motion Inference System (HTMIS): Based on the HDS, the robot must be able to keep
in track the position of the person detected by the HDS and use this information to try to infer the current
person movements [29].

SR-4 Human Action Recognition System (HARS): By using the information taken from the HDS, the robot must
be able to recognize certain hand gestures (used to control the robot) as well as common actions that pickers
perform during harvesting operations (see [31, 30].

SR-5 Collision Avoidance System (CAS): The robot must be able to perform human aware maneuvers while evad-
ing unexpected people (for example where the robot crosses footpaths) and while approaching a worker to
unload/load trays [16, 11].

SR-6 Safety Contact System (SCS): In case of imminent contact (either by robot failures or human mistakes), the
severity of the human injuries can be reduced by implementing a sensorized flexible skin (such as the one
presented in [7]) that could be mounted on strategic areas on the robot structure to detect pressure changes
and stop the robot immediately.

Based on these six components, the following safety policies are proposed with the aim of reducing the severity
and/or occurrence of the failures identified in Table 3.
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SP-1 The AVFAS must activate visual alerts with the aim of make the people who were planning to approach the
robot be aware of the potential danger without the need to stop robot operations. Moreover, the AVFAS can
also activate auditory alerts with explicit prerecorded voice messages to make the robot’s intentions easier
to understand for untrained people.

SP-2 The AVFAS must activate audiovisual alerts periodically to warn people of the robot’s current intentions,
especially useful when the robot is going to perform rows transitions inside the polytunnels. (When transi-
tioning between rows the robot moves sideways, and, given the position of the sensors, moves blind.)

SP-3 The AVFAS must activate visual alerts when a human is detected within the public zone (d > 3.6m) in
order to make them aware of the robot presence and potential danger. Moreover, the robot must activate
audiovisual alerts when a human is within the social zone (1.2m ≤ d < 3.6m) to ask if they need the robot’s
service (in case of operations inside polytunnels) or to inform them that the robot yields priority to the human
by default (in case of operations outside polytunnels). According to the replying hand gesture, the robot has
to pause the operation, re-plan another route, or approach the human.

SP-4 The CAS can be used to slowly approach a picker to load/unload trays only if the HTMIS infers that the
picker is mostly stationary or if the HARS recognizes a specific hand gesture indicating it.

SP-5 The CAS can be used to perform safety evasion maneuvers outside the polytunnels only if the maneuver-
ability space is wide enough and the HTMIS infers that the human detected is going to be stationary.

SP-6 A hand gesture with the directive of pause/continue robot operations can be recognized by the HARS at any
moment, inside or outside the polytunnels.

SP-7 A safety stop can be automatically triggered by the HDS when a human is detected within an unsafe distance
from the robot (d ≤ 7m for UV-C treatment, or d ≤ 1.2m for the remaining scenarios) or by SCS if a physical
contact is detected.

SP-8 The farm workers and visitors must receive a basic training about robot operation modes, the meaning
of visual and auditory alerts, and the potential hazards of approaching them ( specially critical for UV-C
treatment scenario).

3.4 Safety system architecture

Based on the safety requirements defined in Subsection 3.3, this subsection presents the overall architecture of the
proposed safety system designed to address a safe HRI in the four scenarios studied in the MeSAPRO project.
The proposed architecture is made up of three connected layers where, each layer is designed to address safety
interaction at a different level, and higher layers aim to reduce the activation of lower layers. The higher layer
aims to prepare a hassle free route and keep it up to date with changes in environment. In case of unexpected
HRIs, the middle layer corresponds to intelligent HRI with the aim of keeping the distance between them within a
safety range. Finally, the lower layer is utilised only in emergency scenarios where the upper layers do not respond
properly to a specific situation.

3.4.1 Third layer: Efficiency aware planning

Layer 3 is the most upper layer in this architecture which introduces the efficiency aware planning. This layer is
relevant only in scenarios in which the robot requires to share the workspace with the human workers, i.e. picking
and logistics. In this scenarios, the efficiency aware planning is responsible to generate routes which involved
only the necessary HRIs to minimize unnecessary stops or rerouting. This layer relies on global information of the
environment as the expected location of every worker inside the polytunnel using GNNS based approaches [20],
camera based approaches [27], model prediction based approaches or any other solution which uses human data
extracted from external sources. By having global information of the workers locations it is possible to improve
the coordination within the fleet of robots and thus optimize the scheduling of departure times (minimizing non-
productive times), and creating routes which avoid stops due to unnecessary interactions with a worker who did
not require the robot support. However, since only pickers are expected to have a GNSS tracking device, there is
still a chance to have unnecessary interactions with other farm workers or untrained people.
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3.4.2 Second layer: Navigation intent communication and planning

In case of both planned and unplanned HRI, the robot should be able to communicate with the human and decide
what action to perform in order to ensure a safe and efficient interaction. With this aim, the second layer uses the
information delivered by the on-board sensors to infer the human actions/intentions and decide what the actions
the robot should take according to the safety requirements defined in Subsection 3.3. Unlike, the layer 3, this
layer is expected to be used in the four agricultural scenarios, however not all the methods used in this layer are
necessary or useful for all the scenarios. To explain how all the methods used in the second layer works, they will
be divided into two groups:

Robot-to-human communication methods: To make the human aware of the robot current behaviour and future
intentions, the following tree methods are proposed:

• Robot back-off movement: In operations which allow the presence of human at work space, if the robot
is within a human social space, the robot should or not yield priority to humans (it depends on the robot
operation). To communicate with human that the robot is yielding the priority, the robot performs a back-off
slow movement before stop. In case the robot has priority, the robot motion will continue as planned. The
backward movement directive is only applied in specific situations which include the planned interactions to
load/unload trays at the collection point or when a picker is going to place fruit on the robot during picking
operations.

• Visual alerts: In case the robot back-off movement is not clearly interpreted by the human, then the robot is
equipped with beacons which uses different colors to indicate different robot behaviours and also indicate
the level of risk based on the distance between the human and the robot.

• Audio alerts: To complement the robot movement and visual alerts, (especially useful in case of interaction
with non-trained people), the robot is equipped with speakers that reproduce prerecorded voice messages
that explicitly indicate robot intentions and warn human about danger. Specific voice messages can be ap-
plied in UV-C treatment operations to warn human about UV-C light danger, or in any operation inside the
polytunnels to warn any occluded human at the end of rows that the robot is going to leave a row. Moreover,
in operations which are time critical and it is require to minimize the waste of time during pauses, the voice
messages may produce a more efficient and fluid close interaction. Note that the audiovisual alerts can be
triggered by a human detection or can be activated periodically to make any human (probably distracted)
aware of the robot presence, intentions and potential danger. The visual alerts can be seen from a larger dis-
tance than the voice messages can be hear (limited by the speaker output power). However the audio alerts
explicitly communicate the message whiles the visual alerts may be misunderstood by non trained workers.

Human-to-robot communication methods: A Non-verbal communication method such as using hand gestures
can provide valuable information that allow humans to interact with robots in an intuitive manner, especially in
planned interactions for load/unload trays. Thus, to make the robot aware of the human intentions, and allow a
bilateral communication between them, the following human gesture recognition methodology is proposed:

• Human gestures recognition: While a robot is navigating along the rows inside the polytunnels, it will
probably interact closely with multiple human workers, thus the robot should be able to infer if the worker
detected requires its assistance or not. The latter can be done following the proposal presented in [31], where
pickers give directives to a robot based on hand or hand gestures. The directives may include: move towards
me, return to collection point, stop, continue operations, and re-routing.
During planned close interactions, the robot can reproduce pre-recorded voice messages which ask human
worker for directives. The worker can reply this messages by performing for instance the gestures corre-
sponding to move towards me or return to collection pont. In this way the robot first ask, and the human reply.
However, the communication is not necessary always in this way, for instance the gesture for stop aims to
be used in any moment without requiring a robot request first. Additionally, not only hand gestures can be
recognized, but actions can also be incorporated into the recognition model to be able to better infer what
the human is currently doing or intended to do.

3.4.3 First layer: Safety Stops

The first layer of the architecture is the last line of defense in the safety system. It is triggered when an unexpected
physical contact is detected or when an imminent collision is likely to happen due to late human detection. Thus,
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Figure 3: The layered safety system architecture corresponding to failures

the only solution to minimize human injuries is to stop the operations as soon as these anomalies are detected. The
safety stop can be triggered by two subsystems:

• Safety stop triggered by LiDAR/camera readings: The first line of action to stop the robot motion in case of
imminent collision is to use LiDAR/camera readings. Independent of the robot operation, if the robot detects
a human within 1.2m, the directive is to immediately stop in order to reduce the probability of colliding with
the human. Additionally a safety stop is triggered if the human is detected within 7m only for the UV-C
treatment scenario.

• Safety stop triggered by soft sensor readings: As backup, the robot must be equipped with sensors to
enhance safety and intuitiveness of physical HRIs for both intentional and unintentional contacts. In case
of imminent contact (either by robot failures or human mistakes) the reading of this sensors can be used to
stop the robot immediately. The human injuries are not expected to be completely removed by applying this
safety stop, but at least the severity of these can be reduced. To implement this kind of safety systems, a
possible approach is to use sensorised flexible skin (as the one presented in [7]) that could be mounted on
strategic areas on the robot structure to detect pressure changes. However, since the impact can happen on
an uncovered part of the robot, an alternative approach can be the use of force sensors attached to the robot
actuators (i.e. the wheels motors) in order to detect any change in torque signal. A combination of these
solutions can minimise the probability of having false positives or false negatives detection.

The Figure 3 represents the failures from Table 3 and the corresponding layer from safety architecture that will
be handling the failure.

4 Formal verification

In order to verify the satisfaction of safety requirements of the agricultural scenarios studied in this work, each
component of the proposed safety system were modeled as discrete-time Markov decision process (MDP) [24].
MDPs are a widely used formalism to model sequential decision-making problems where there is inherent uncer-
tainty about the system’s evolution. The use of MDPs makes it possible for us to use a probabilistic model-checking
tool such as PRISM [21] which already has support for solving MDPs against properties in Linear Temporal Logic
(LTL), in particular allowing for the maximisation of the probability of satisfying an LTL formula. This, in turn,
means that the model of system behaviour, in the form of an MDP, can be checked against conditions, expressed
in LTL, that correspond to states that we wish to achieve (such as “the robot stops when the human makes the
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appropriate signal”) or wish to avoid (such as “the robot collides with the human”). This section first introduces
the assumptions used to construct the proposed HRI model, then the discrete states that define the MDP represen-
tation of the proposed model are shown, and finally, a case study is presented to illustrate how to implement each
component of the proposed model using the PRISM modeling language.

4.1 Modelling

4.1.1 Defining the robot agricultural tasks as sequence of steps

To determine whether the tasks within the agricultural scenarios described in Subsection 2.1 are completed or not,
they can be divided into a sequence of steps. The robot finishes a specific agricultural task when it has successfully
completed all the steps. For instance, the sequence of steps to complete the UV-C treatment scenario corresponds
to a closed loop in which the robot starts operation from its home location at the storage shed, the robot moves
from the shed to the polytunnel, the robot performs the UV-C treatment, the robot moves back to the shed, and
finally, the robot is back at the shed. Thus, as it can be seen in Fig. 4, for every agricultural scenario studied here, the
sequence of steps corresponds to a closed loop that starts and finish with the robot at the shed. The number of steps
and complexity depends on the level of HRI expected on each scenario. For instance, in the case of performing
the logistics tasks, the corresponding sequence of steps is more complex than for UV-C treatment (where it is not
expected to have HRI) since now it is possible to interact with human workers on footpaths between the shed and
the polytunnels or with pickers inside polytunnels. Additionally, as can be seen in Fig. 4 (highlighted in red),
in order to determine when a robot has completed a specific step within the sequence, there are conditions to be
satisfied such as traversing a specific distance or completing the harvesting of a certain amount of fruit placed
on trays. Thus since a planned/unplanned HRI may happen each time the robot traverses a new polytunnel row
or footpath segment, then the inclusion of these conditions exponentially increases the chances of having human
injuries.

Figure 4: Diagrams with the sequence of steps which define all the agricultural scenarios.

4.1.2 Robot operation modes

In order to successfully complete each of the sequential steps defined above, the robot must have the ability to oper-
ate in different modes and with different levels of autonomy to adapt to possible unexpected situations. Therefore,
we describe the robot motion during the above-mentioned scenarios by 11 different modes divided into 3 groups:

• Standard operation modes: The operation modes in common for all agricultural scenarios include: 1) Robot
in pause mode, 2) Robot moving along footpaths, 3) Robot performing a transition between footpath seg-
ments, 4) Robot performing a transition between rows inside the polytunnel.

• Custom operation modes: In order to perform certain agricultural tasks, the robot must be configured in
different ways (see Figure 2) and move at different speeds. Thus, while operating inside the polytunnel,
the robot can be working in three custom modes: 5) Robot moving along a row transporting trays (nor-
mal speed), 6) Robot moving along a row while picking fruit (slow motion) 7) Robot moving along a row
performing UV-C treatment (same configuration used for scouting).
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• Human-aware operation modes: The implementation of the safety system components described in Subsec-
tion 3.3 aims to ensure a safe HRI during planned and unplanned interactions. Thus, the operation modes
which make use of these safety components include: 8) Robot stopping the current action because of human
detected within a dangerous distance or because a collision was detected, 9) Robot approaching the human
worker’s position (reducing the speed) to load/unload trays, 10) Robot moving away from the human’s
position after loading/unloading trays, 11) Robot performing evasive maneuvers on a footpath.

4.1.3 Human decision-making

In order to emulate human decision-making during planned and unplanned HRI, the following assumptions were
considered according to the human’s training level:

• If the HRI happens with the picker who summoned the robot, then the picker starts the interaction being
stationary, but they can decide to stay stationary or move towards the robot if they are within the social
zone.

• If the HRI happens with a picker who didn’t call the robot, then they start the interaction being stationary,
but they can decide to approach or move away when the robot is within the social zone.

• Untrained people inside polytunnels and workers at the end of the rows are always moving to the robot
position until they become aware of the danger. If they become aware of danger, then they move away.

• Workers and untrained people on footpaths move towards the robot until they become aware of the danger.
If they become aware of danger, then they can decide to stop or move away.

• If workers or untrained people decide to remain stationary before the robot enters their social zone, then the
robot starts evading them and the human can decide to keep stationary or walk next to the robot.

• Only workers can perform hand gestures, and this can happen only when the robot is within their social
zone and the workers are aware of the robot presence.

• If a person (independent of the training level) is injured, or if the robot performs a safety stop, then the
person becomes aware of the danger, and decides to move away from the robot.

• Workers who are supposed to place trays on the robot (inside and outside polytunnel) are assumed to always
be aware of the danger of HRI.

• An untrained person who is going to interact with a robot can become aware of the danger only if he/she is
able to interpret the audiovisual alerts activated by the AVFAS. If he/she is not able to interpret the alerts,
then he/she decides to continue approaching till reaches an unsafe distance.

4.1.4 Hazard situations

Considering all the situations and failure modes presented in Table 3, we can conclude that there are basically five
ways to produce human injuries:

HI-1 Actual human injuries when d ≤ 7m and the robot continues to carry out UV-C treatment in the polytunnels
(UV-C treatment scenario).

HI-2 Actual human injuries when the human collides with the robot but the robot stops just after the contact (in
any agricultural scenario).

HI-3 Actual human injuries when the human collides with the robot and it is still moving after contact (in any
agricultural scenario).

HI-4 Potential human injuries when 1.2m ≤ d < 3.6m (social zone) and the robot is not aware of the human’s
intentions during logistics and picking operations (logistics and picking scenarios).

HI-5 Potential human injuries when 1.2m ≤ d < 3.6m (social zone) and the human is not aware of the presence of
the robot (in any agricultural scenario).
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HI-2 and HI-3 are hazards that represent real physical human injuries where the severity level depends on the
robot speed during and after the collision. The remaining hazards represents only potential or virtual injuries. In
the case of HI-1, it is a virtual injury but may produce real injuries if the human is explosed to UV-C radiation at
an unsafe distance for a long enough period of time [25]. In the case of HI-5, since the robot is getting close to the
intimate zone, any failure in the HDS, or the HTMIS can produce delays in the activation of safety stops which
subsequently may lead to HI-2 or HI-3. In the same way with HI-4, if HARS fails to interpret a hand gesture
performed by a trained worker located next to the robot, an incorrect action by the robot may lead to HI-2 or HI-3.

As was initially mentioned in Subsection 2.1 and later was shown in Table 3, the hazards identified for the
scouting scenario overlap with the hazards covered by the rest of the scenarios. Thus, to simplify the modelling
and human injury assessment, the following sections will cover only the first three scenarios described in Subsec-
tion 2.1.

4.2 Implementation in PRISM language

4.2.1 The PRISM language

As presented in [22], instead of using a traditional flat representation of a MDP, we can use an equivalent factored
representation, where the state is decomposed into relevant state features, and the transition function is encoded
over such features. In this work, we decided to take advantage of such a factored representation, using a proba-
bilistic STRIPS-like representation of factored MDPs, based on the PRISM modeling language.

The fundamental components of the PRISM language are modules, variables, and constants. A model is com-
posed of a number of modules which can interact with each other. A module contains a number of local variables.
The values of these variables at any given time constitute the state of the module. The global state of the whole
model is determined by the local state of all modules. The behaviour of each module is described by a set of
commands. A command takes the form:

[action] (guard 1 | guard 2) & ... & guard m − > prob 1 : update 1+ ...+ prob n : update n (1)

The m-th guard is a predicate over all the variables in the model (including those belonging to other modules)
which may be related with other guards by logical operators such as AND (&), OR ( | ), Not Equal (!=), among oth-
ers. Each n-th update describes a transition which the module can make if all the guards are true. A transition is
specified by giving the new values of the variables in the module, possibly as a function of other variables or con-
stants. Each update is assigned a probability (or in some cases a rate) which will be assigned to the corresponding
transition. The command also optionally includes an action, either just to annotate it, or for synchronisation.

With this base, the following subsections aim to introduce the variables and probabilities (constants) needed to
construct commands as the one in (1) which represents the state transitions of the proposed HRI model.

4.2.2 Modelling the agricultural tasks

As was mentioned in Subsection 4.1.1, the agricultural tasks are divided into a sequence of steps. In order to define
in which step of each scenario we are, the variables x uvc, x logistics and x picking were introduced. Table 10 in the
Appendix lists and describes the 4 discrete values that variables x uvc can take as well as the possible transitions
between them. On the other hand, Table 10 lists 9 values that the variable x logistic can take where 8 of them
overlap with the values that the variable x picking can take. For these three variables related to the agricultural
tasks, the transition between two different values is always deterministic, thus it is not necessary to introduce
any probabilistic terms to model the transitions. However, it is necessary to introduce some auxiliary variables
to determine when an agricultural step has been completed and a transition can be carried out. These auxiliary
variables are also listed in Table 10 and include: the number of full trays that the robot is carrying represented by
x trays; the number of times the robot performed two way trips from polytunnel to collection point represented
by x runs; and the number of rows and footpaths that have been traversed by the robot represented by x rows and
x segments respectively.

The range of values that the auxiliary variables can take is constrained by the constants described in Table 11,
which basically define the scale of the field to be covered and the capacity of the robot to transport full trays.

4.2.3 Modelling the robot operations

Depending on the agricultural scenario, the robot is expected to perform specific operation modes that may or
may not overlap with another scenario. Thus, based on the robot operation modes introduced in Subsection 4.1.2,
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the robot operation is defined by the variable x robot which can take 11 values listed in Table 12. Similar to the
variables related to the agricultural tasks presented in Table 10, the variable x robot is purely deterministic, thus, it
does not depend on any probabilistic term to make transitions between two values.

4.2.4 Modelling the safety system components

According to the safety requirements presented in Subsection 3.3, the proposed safety system is made up of 6
main components which include: AVFAS, HDS, HTMIS, HARS, CAS, and SCS. To implement these components in
PRISM, their behavior has been characterized by 6 variables and 16 constants that are used to define the probability
of success/failure (i.e. the reliability) of each component.

Table 13 summarizes the values that the 6 variables x hds, x htmis, x hars, x scs, x visual and x voice can take,
highlighting with * the transitions that are non-deterministic. Table 14 shows a list of constants that are introduced
to define the probabilities to make non-deterministic transitions. These constants can take values between 0 and
1 depending on the actual effectiveness of the safety system implemented. For instance, if the HDS is considered
virtually perfect to detect a human above 7m, then, the constants x hds fail 1 and x hds fail 5 are set as 0 while
they are set as 1 if 100% of times the HDS fails to detect a human on time. Notice that the performance of HDS in
terms of failures may be different inside the polytunnel than at footpaths due to the different levels of occlusion
on each environment. Thus, Table 14 shows independent constants for define the probability of failure in each
environment.

It is important to notice that in Tables 13-14 no variables or constants were introduced to implicitly define the
CAS, but its behavior was included when x robot=3,8 and the success of the collision-free maneuvering depends
indirectly on the success of the remaining safety system components.

Finally, the behavior of the AVFAS was defined by introducing two independent variables for audio and visual
alerts. According to Table 13, the transitions of these variables are mostly deterministic, but it is because the non-
deterministic behavior of their potential failures are modelled as part of the human side instead of the AVFAS
itself.

4.2.5 Modelling human behaviour

For PRISM implementation purposes, human behavior is described by 5 variables for which the possible values are
listed in Table 15. The first variable is denoted by x human and determines if the human decides to interact with the
robot or not and captures what the human’s training level is (trained or untrained). The second variable denoted
by x motion represents the most relevant actions that trained farm workers typically perform during harvesting
operations and the expected actions from untrained people whom approach the robot without being aware of the
danger. The third variable is denoted by x aware and represents the human knowledge about the robot intentions
or potential danger. The fourth variable denoted by x gesture determines if the human performs or not a hand
gesture to make the robot knows about his/her intentions. Finally, the fifth variable denoted by x dist represents
the distance between the human and the robot in discrete steps according to the human personal spaces. In order
to introduce non-deterministic human behavior, 5 constants are used to define the probability of making a decision
or another (see Section 4.1.3). Table 16 summarizes the list of probabilities used that include the probabilities that
unplanned HRI are going to happen, the probabilities that the human gets aware of the robot presence or potential
danger, the probability that the human decided to perform a risky movement during close HRI, and the probability
that a trained worker performs a hand gesture to communicate him/her intentions to the robot.

It is important to notice that the transition probabilities may vary according to the training level of the human
interacting with the robot. This can be seen in Table 16 where it was used different constants to characterize the
behaviour of untrained visitants and trained farm workers.

4.2.6 Modelling the hazard situations

Finally, since the values of the variables at a given time constitute the state of the whole HRI, then the PRISM
model checker tool should be able to determine if a potential hazard situation is happening or not when a failure
is introduced into the robot safety system. The failure modes to be evaluated in PRISM were identified previously
in Table 3. Moreover, in Subsection 4.1.4, it was identified the hazard scenarios which may lead to actual human
injuries, remarking HI-1, HI-2 and HI-3. These three possible human injuries can be evaluated in PRISM by
introducing the following conditions:

HI-1 Pmax=? [ F task finished=false & (x dist>=2 & x robot!=10 & x uvc=2) ].
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HI-2 Pmax=? [ F task finished=false & (x dist=5 & x scs=1) ].

HI-3 Pmax=? [ F task finished=false & (x dist=5 & x scs=2) ].

where Pmax=? [F<t task finished=false (<condition>)] is the notation of LTL properties to be evaluated in PRISM.
This particular notation determines the maximum probability of satisfying a specific condition before the sim-
ulated agricultural process ended. The auxiliary variable task finished becomes true when the variables x uvc,
x logistics, and x picking have taken all their possible values and return to the initial value 0.

4.3 PRISM implementation: UV-C treatment case study

In Subsection 4.2, all the variables, possible values, and transition probabilities were introduced in order to model
the agricultural scenarios defined in Subsection 2.1. The aim of this Subsection is to illustrate with an example
how to use these elements to construct a simplified UV-C treatment model in PRISM by using commands of the
form (1).

Since this example is only for illustration purposes, a simplified version of the UV-C treatment scenario is pre-
sented here, where only the robot operations inside the polytunnels are modeled, i.e when x uvc=2. The complete
model with all the transitions presented in Tables 10, 12, 13, and 15 will be used in Section 4.4.

4.3.1 Commands to model the agricultural task

Since only operations inside the polytunnel are considered, then the variable x uvc does not need to be updated.
However, the auxiliary variable x rows needs to be updated each time the robot covers a row. Thus, in order to
cover the possible transitions for the variable x rows, the following command is needed:

(guard 1 & x rows < N rows) − > (x rows ′ = x rows+ 1); (2)

where the guard expression is defined by:

guard 1 = (x uvc = 2 & x human = 0 & x robot = 8) (3)

The command in (2) updates x rows starting from 0 and increasing in steps of 1 till reach x rows=N rows which
represents the condition when the robot has covered all the rows that are expected to be treated. To better under-
stand how the command (2) is executed in PRISM, Fig 5 illustrates the transition between states, where the number
inside the circles are the possible values of variable x rows from 0 to N rows, and the numbers in red represent the
probabilities of transition if the condition guard 1 is satisfied.

Figure 5: Diagram with the states transition for variable x rows.

4.3.2 Commands to model the robot operation

In order to make all possible transitions for the variable x robot during the UV-C treatment operation, the following
commands are needed:

(guard 2 & x robot = 7) − > (x robot ′ = 4); (4)
(guard 2 & (x robot = 4 | x robot = 10)) − > (x robot ′ = 7); (5)
(guard 3 & x robot! = 10) − > (x robot ′ = 10) & (x aware ′ = 1); (6)
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where the guards are defined by:

guard 2 = (x uvc = 2 & x human = 0) (7)
guard 3 = (x uvc = 2 & x human! = 0 & x hds = 2) (8)

Commands (4)-(5) aim to update the value of x robot between moving along a row and making transition between
rows when no human presence is detected. The command in (6) activates a safety stop (i.e. stop motion and
turning off the UV-C light) in case a human is detected within the range 3.6m≤ d ≤ 7m. This command also
updates the variable x aware to make the human aware of the danger. To reactivate the robot operation after a
safety stop, the condition (guard 2 & x robot=10) has to be satisfied in command (5) which makes the robot resume
the operation from a transition between rows. Figure 6(a) illustrates the execution of commands (4)-(6) where the
color used on each arrow indicates which condition/guard has to be satisfied to make a transition.

Figure 6: Diagrams with the states transition for variables: (a) x robot, considering only operations inside the
polytunnels during UV-C treatment (b) x voice and x visual.

4.3.3 Commands to model the safety system

To simplify this example, the safety system during the UV-C treatment only includes the AVFAS and HDS. Thus, in
order to make transitions for the variable x hds when the robot is inside the polytunnels, the following commands
need to be implemented:

(guard 4 & x hds = 0) − > 1− p hds 1 : (x hds ′ = 1) + p hds 1 : (x hds ′ = x hds); (9)
(guard 5 & x hds = 0) − > 1− p hds 5 : (x hds ′ = 1) + p hds 5 : (x hds ′ = x hds); (10)
(guard 6 & x hds <= 1) − > 1− p hds 2 : (x hds ′ = 2) + p hds 2 : (x hds ′ = x hds); (11)
(guard 7 & x hds <= 1) − > 1− p hds 6 : (x hds ′ = 2) + p hds 6 : (x hds ′ = x hds); (12)
(guard 8 & x hds <= 2) − > 1− p hds 3 : (x hds ′ = 3) + p hds 3 : (x hds ′ = x hds); (13)
(guard 9 & x hds <= 2) − > 1− p hds 7 : (x hds ′ = 3) + p hds 7 : (x hds ′ = x hds); (14)
(guard 10 & x hds <= 3) − > 1− p hds 4 : (x hds ′ = 4) + p hds 4 : (x hds ′ = x hds); (15)
(guard 11 & x hds <= 3) − > 1− p hds 8 : (x hds ′ = 4) + p hds 8 : (x hds ′ = x hds); (16)
(guard 12 & x hds = 4) − > (x hds ′ = 3); (17)
(guard 13 & x hds = 3) − > (x hds ′ = 2); (18)
(guard 14 & x hds = 2) − > (x hds ′ = 1); (19)
(guard 15 & x hds = 1) − > (x hds ′ = 0); (20)
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where the guards are defined by:

guard 4 = (x uvc = 2 & x human! = 0 & x robot! = 7 & x dist = 1) (21)
guard 5 = (x uvc = 2 & x human! = 0 & x robot = 7 & x dist = 1) (22)
guard 6 = (x uvc = 2 & x human! = 0 & x robot! = 7 & x dist = 2) (23)
guard 7 = (x uvc = 2 & x human! = 0 & x robot = 7 & x dist = 2) (24)
guard 8 = (x uvc = 2 & x human! = 0 & x robot! = 7 & x dist = 3) (25)
guard 9 = (x uvc = 2 & x human! = 0 & x robot = 7 & x dist = 3) (26)
guard 10 = (x uvc = 2 & x human! = 0 & x robot! = 7 & x dist = 4) (27)
guard 11 = (x uvc = 2 & x human! = 0 & x robot = 7 & x dist = 4) (28)
guard 12 = (x uvc = 2 & x human! = 0 & x dist = 3) (29)
guard 13 = (x uvc = 2 & x human! = 0 & x dist = 2) (30)
guard 14 = (x uvc = 2 & x human! = 0 & x dist = 1) (31)
guard 15 = (x uvc = 2 & x human = 0 & x dist = 0) (32)

Commands in (9)-(16) cover the updates of x hds from 0 to 4 which depend of the probabilities of failure defined
in Table 14. On the other hand, commands in (17)-(20) cover the updates of x hds from 4 to 0 which in this case are
purely deterministic. Figure 7 illustrates the transitions of variable x hds. However, for readability, the transitions
whose conditions depend on x robot = 7 are not illustrated on this diagram (i.e when the robot is making transitions
between rows).

Figure 7: Diagram with the states transition for variable x hds, without considering transitions when robot opera-
tion x robot=7.

Then, in order to make the transitions for the two variables related with AVFAS, the following commands are
needed:

(guard 16 & (x visual! = 1 | x voice! = 1)) − > (x visual ′ = 1)&(x voice ′ = 1); (33)
(guard 17 & x voice = 0) − > p alerts : (x voice ′ = 2) + 1− p alerts : (x voice ′ = x voice); (34)
(guard 17 & x visual = 0) − > p alerts : (x visual ′ = 2) + 1− p alerts : (x visual ′ = x visual); (35)
(guard 18 & (x visual! = 0 | x voice! = 0)) − > (x visual ′ = 0)&(x voice ′ = 0); (36)

where the guards are defined by:

guard 16 = (x uvc = 2 & x hds >= 1) (37)
guard 17 = (x uvc = 2&(x robot = 7 | x robot = 1 | x robot = 4)) (38)
guard 18 = (x uvc = 2 & x hds = 0) (39)

Command (33) activates the audiovisual alerts (visual and voice alerts in parallel) when the HDS detects a human
above 7m. Commands (34)-(35) can also activate the audiovisual alerts, but in this case without need to detect a
human, this activation depends of the probability that at this specific moment a periodic alert was programmed
to happen. In any case, after alerts were activated, they can be deactivated only if the condition in (36) is satisfied.
The execution of commands (33)-(36) is illustrated in Fig. 6(b).
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4.3.4 Commands to model the human behavior

To simplify this example, the human behavior considers only the actions performed by untrained people (since
farm workers are aware of the UV-C danger). Thus, the transitions of the variable x gesture were not included
since only trained people is able to perform hand gestures.

In order to update the value of x human, the following commands are required:

(guard 19 & x human = 0) − > p int 1 : (x human ′ = 1) + 1− p int 1 : (x human ′ = x human); (40)
(guard 20 & x human! = 0) − > (x human ′ = 0); (41)

where the guards are defined by:

guard 19 = (x uvc = 2 & x rows < N rows) (42)
guard 20 = (x uvc = 2 & x dist = 0 & x motion = 2 & x aware = 1) (43)

Command (40) is used to determine if an untrained person is going to interact with the robot inside the polytun-
nels or not. Once a HRI has happened, the variable x human returns to the default value of 0 if the condition in
command (41) is satisfied.

Figure 8: Diagrams with the states transition for variables: (a) x human (b) x motion and (c) x aware.

Once we know that an untrained person is going to interact with a robot, the actions which govern the human
motion are represented by the variable x motion, which transitions are defined by the following commands:

(guard 21 & x motion = 0) − > (x motion ′ = 1); (44)
(guard 22&x motion = 1) | (guard 23&x motion! = 2) | (guard 24&x motion! = 2) − > (x motion ′ = 2);

(45)

(x human = 0& x motion = 2) − > (x motion ′ = 0); (46)

where the guards are defined by:

guard 21 = ((x robot = 4 | x robot = 7) & (x human = 1&x dist! = 5&x aware = 0)) (47)
guard 22 = ((x robot = 4 | x robot = 7) & (x human = 1 & x aware = 1)) (48)
guard 23 = (x dist = 5 & x human! = 0) (49)
guard 24 = (x human! = 0 & x robot = 10) (50)

Then, to make the untrained people aware of danger of approaching the robot, the following commands are
included to update x aware:

(guard 25 & x aware = 0) − > p aware 1 : (x aware ′ = 1) + 1− p aware 1 : (x aware ′ = x aware); (51)
(guard 26 & x aware = 0) − > p aware 3 : (x aware ′ = 1) + 1− p aware 3 : (x aware ′ = x aware); (52)
(guard 27 & x aware = 1) − > (x aware ′ = 0); (53)
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where the guards are defined by:

guard 25 = (x uvc = 2&x robot! = 10&x dist >= 1&x visual >= 1&x human = 1) (54)
guard 26 = (x uvc = 2&x robot! = 10&x dist >= 2&x voice >= 1&x human! = 0) (55)
guard 27 = (x uvc = 2&x human = 0) (56)

Commands (51)-(52) update the variable x aware in case of any of the audiovisual alerts were activated at a specific
x dist. The variable x aware returns to the default value of 0 by using the command (53).

Finally, to fully model human behavior in this case, the variable x dist needs to be updated according to the
relative distance between the human and the robot. The latter is done by introducing the following commands:

(guard 28 & x dist <= 3) − > (x dist ′ = x dist+ 1); (57)
(guard 29 & x dist <= 3) − > (x dist ′ = x dist+ 1); (58)
(guard 30 & x dist = 4) − > (x dist ′ = 5) & (x aware ′ = 1); (59)
(guard 31 & x dist >= 1) − > (x dist ′ = x dist− 1); (60)

where the guards are defined by:

guard 28 = (x human! = 0&x motion = 1) (61)
guard 29 = (x human! = 0&x motion = 0&(x robot = 1|x robot = 2|x robot = 4)) (62)
guard 30 = (x robot! = 10&x human! = 0) (63)
guard 31 = (x human! = 0&x motion = 2) (64)

Commands (57)-(58) update the variable x dist from 0 to 4 in case the robot or the the human are approaching to
each other. The command (59) covers the remaining transition from 4 to 5 in case a safety stop was not activated
on time, and the command (60) makes the variable x dist update from 5 to 0 by steps of 1.

The state transitions of variables x human, x motion and x aware are illustrated in Fig. 8, and the transitions of
variable x dist are shown in Fig. 9.

Figure 9: Diagram with the states transition for variable x dist.

4.3.5 Synchronization

After defining the commands to update all the variables within a PRISM module, we need to ensure that the
commands are executed in a specific order to emulate the behavior of the real system. One way to synchronize the
execution of the commands presented above is to label each command with actions as was illustrated in expression
(1). However, this kind of synchronization method depends on the product of the individual rates of transition
of all commands with the same label. Thus, for synchronization purposes, we decided to use auxiliary Boolean
variables called flags which restrict the execution of commands in a specific order each simulation cycle.

A flag can be assigned to one or more local variables within the model. A flag is always initiated as false and
can be updated to true only after the corresponding variable was updated. Thus, a simulation cycle starts with all
the flags set as false and ends when all of them are true (being reset as false after that). The order of updating these
flags is shown in Figure 10 starting with the flag related with x uvc, x logistics, and x picking, and ending with the
flag related with variables x trays, x runs, x rows, and x seg.
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Figure 10: Diagram with the order in which the local variables are updated in PRISM.

For instance, in order to execute the command in (4) to make the variable x robot change from 7 to 4, the command
should be modified as follows:

(guard 2 & flag hars = true & flag robot = false) − > (x robot ′ = 4) & (flag robot ′ = true); (65)

Apart from this modification, it is necessary to include an additional command per each variable in order to avoid
being stuck in the execution of the same flag forever when no update is required. By considering again the x robot
as example, the extra command have to make flag robot=true when none of the conditions in (7)-(8) are satisfied.
Thus, the extra command for the x robot example takes the following form.

(flag hars = true & flag robot = false & guard sync = false) − > (flag robot ′ = true); (66)

where guard sync = (guard 2 | guard 3).

4.4 Human injury assessment

Using the PRISM-based model5 described in Section 4.1, this section presents a sensitivity analysis that evaluates
the probability of human injuries in the presence of the most relevant failures identified in Table 3. The evaluation
considers three cases where we assumed three different overall performances of the robot safety system and the
human behavior/perception. These three cases are called i) the ideal case, when the safety system is working
almost perfectly; ii) the regular case, when the safety system is as reliable as would expect in real-life; and iii) the
worst case, when the safety system is not at all reliable. Tables 14, 16 show the values of the constants (used as
probabilities of transition) that were chosen to characterize the three cases to be evaluated. Then, the sensitivity
analysis for each case is performed as follows. We fixed most of the probabilities but varied from 0% to 100%
(in steps of 10%) the values which correspond to the behavior of a specific failure in Table 3. For all the cases
evaluated, the agricultural tasks were defined by using the following constant values: N rows = N runs = 5,
N segments shed = 2, N segments collect = 1, and N trays = 2.

The results in Tables 4-6 show the consequences of: i) having or not unplanned HRI, ii) having HRI with a
trained or untrained people, and iii) having two different levels of failure being the ideal case 10% and the worst
case 100%.

4.4.1 UV-C treatment

Table 4 shows the probability of getting injuries of types HI-1, HI-2 and HI-3 according to the specific failure
evaluated. The failures F-G2 and F-G6 are not evaluated in the UV-C treatment since those are failures related
with farm workers, and it was established in SP-8 that trained workers knows that they can not interact with
robots inside the polytunnel during UV-C treatment.

As was expected, the highest probabilities of getting human injuries happen under the condition of 100% of
probability of failure with 100% of probability of unplanned HRI with untrained people. In the worst case, the
highest probability of getting human injuries reaches 48.22%, 46.5% and 100% for injuries of type HI-3, HI-2
and HI-1 respectively. In contrast, when comparing these results with the ideal case, the human injuries related
to physical contact are almost negligible but the injuries due to UV-C light exposure remains as dangerous as

5The PRISM-based model and properties used for the sensitivity analysis can be seen at https://drive.google.com/drive/
folders/1l2EIftoKPoewKHVeg2VtZq9lNpSRntHW?usp=sharing. This includes the model described above for the UV-C treatment
scneario and models for the logistics and picking scnearios as well.
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Table 4: Resultant human injuries during UV-C treatment operations.

Scenario
Overall

safety system
performance

Human
training

level

Probability of
unplanned HRI

(%)

Probability of
failure

(%)

Probability of getting
human injuries according to

the failure evaluated (%)
HI-3 HI-2 HI-1
F-G1 F-G4 F-G7 F-G4 F-G5&F-U1,2

UV-C
treatment

ideal
case*

untrained
10 10 0.021 0.186 0.19 10.86 17.77

100 0.21 6.581 0.566 61.25 20.75

100 10 0.2 1.523 1.839 70.54 88.7
100 2 37.37 5.385 100 92.98

trained
10 10 0.019 - 0.177 - -

100 0.19 - 0.557 - -

100 10 0.19 - 1.715 - -
100 1.9 - 5.299 - -

regular
case*

untrained
10 10 0.072 0.486 0.46 17.23 27.36

100 0.727 5.721 0.9 61.25 34.18

100 10 0.679 4.495 4.24 87.73 97.92
100 6.645 32.72 8.17 100 99.59

trained
10 10 0.068 - 0.427 - -

100 0.68 - 0.873 - -

100 10 0.638 - 3.962 - -
100 6.257 - 7.947 - -

worst
case*

untrained
10 10 1.526 2.496 3.653 25.72 41

100 7.44 8.879 4.22 61.25 47.68

100 10 6.05 19.64 26.53 97.09 99.95
100 48.22 46.5 30.14 100 99.99

trained
10 10 0.6 - 2.89 - -

100 5.97 - 3.46 - -

100 10 4.88 - 21.83 - -
100 41.33 - 25.67 - -

* see Tables 14, 16 for the transition probabilities used in each case.

in the worst case. This result demonstrate the importance of training everybody on the farm about dangers of
approaching a robot during UV-C treatment but also the importance of the AVFAS to alert untrained people of the
danger in the case the training fails.

4.4.2 Logistics and Picking

Unlike for UV-C treatment, for logistics and picking, the failures F-U1 and F-U2 are not evaluated but the failures
F-G2 and F-G6 are included instead. Thus, Tables 5-6, show probabilities of injuries of types HI-2 and HI-3
only. According to these results, the probability of injury when SCS fails during both logistics or picking can reach
above 90% in the worst case and around 20% in the ideal case. In general, the probabilities of getting human injuries
during logistics operations have similar magnitudes but always higher than when robot is on picking operations.
For instance, the probability of human injuries of type HI-2 can reach 100% during logistics (due to F-G4), but for
picking the resultant probability is up to 92.35%. They both are really critical results, and the slight difference is
due to in logistics the robot performs more two way trips from polytunnel to collection point, so the chances of
having unplanned HRI are higher.

As was mentioned for UV-C treatment, mandatory training and proper AVFAS design are crucial factor to
attenuate the consequences of F-G4. Moreover, for logistics and picking, the HARS performance is another crucial
factor to be considered since if F-G6 happens with 100% of probability, then it may produce human injuries of
around 80% even in ideal conditions.

5 Integration and evaluation

We have designed a Human-Aware Navigation (HAN) module based on the safety system presented in Subsection
3.4. This module can be integrated into the standard autonomous navigation system of commercial agricultural
robots. In this section, we provide a much more detailed description of the components of the HAN module.

5.1 Robot Platform and Hardware

The robotic platform used to implement the HAN was a Thorvald II. Figure 11 shows the configuration of the
Thorvald II used along with the list of hardware components mounted on it. In this list, components marked in
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Table 5: Resultant human injuries during logistics operations.

Scenario
Overall

safety system
performance

Human
training

level

Probability of
unplanned HRI

(%)

Probability of
failure

(%)

Probability of getting
human injuries according to

the failure evaluated (%)
HI-3 HI-2
F-G1 F-G2 F-G6 F-G4 F-G5 F-G7

Logistics

ideal
case*

untrained
10 10 1.681 14.15 - 14.16 14.19 14.2

100 15.65 15.33 - 36.20 14.25 16.06

100 10 2.255 18.21 - 18.3 18.59 18.61
100 20.46 28.63 - 100 19.11 27.89

trained
10 10 1.7 14.3 14.35 - 14.35 14.35

100 15.82 15.54 78.93 - 14.38 15.4

100 10 2.45 19.68 20.11 - 20.10 20.11
100 22.09 30.57 87.92 - 20.44 22.3

regular
case*

untrained
10 10 3.549 22.32 - 22.4 22.44 22.13

100 30.56 23.74 - 37.73 22.78 25.14

100 10 5.376 30.96 - 31.7 31.97 31.08
100 42.73 42 - 100 35.12 40.8

trained
10 10 3.574 22.44 13.28 - 22.58 22.34

100 30.74 24.05 69.71 - 22.88 24.7

100 10 5.682 32.31 22.42 - 33.54 33.22
100 44.58 44.73 81.93 - 36.18 37.92

worst
case*

untrained
10 10 27.27 54.67 - 52.89 55.08 53.77

100 80.6 57.07 - 63.65 56.13 60.97

100 10 31 82.54 - 73.97 83.7 83.82
100 97.85 89.65 - 100 89.7 87.8

trained
10 10 27.21 54.51 42 - 54.96 53.62

100 80.4 57.17 82.29 - 56.01 60.22

100 10 51.75 81.18 77.39 - 82.29 81.72
100 96.3 88.08 93.84 - 87.95 88.5

* see Tables 14, 16 to know the transition probabilities used on each case.

Table 6: Resultant human injuries during picking operations.

Scenario
Overall

safety system
performance

Human
training

level

Probability of
unplanned HRI

(%)

Probability of
failure

(%)

Probability of getting
human injuries according to

the failure evaluated (%)
HI-3 HI-2
F-G1 F-G2 F-G6 F-G4 F-G5 F-G7

Picking

ideal
case*

untrained
10 10 0.675 5.89 - 5.9 5.936 5.938

100 6.578 7.176 - 29.13 5.966 7.365

100 10 1.255 10.33 - 10.43 10.76 10.77
100 11.9 21.75 - 88.11 11.04 20.41

trained
10 10 0.747 6.497 6.548 - 6.547 6.548

100 7.252 7.85 48.59 - 6.567 7.232

100 10 1.976 16.04 16.5 - 16.49 16.5
100 18.16 27.44 80.42 - 16.65 19.61

regular
case*

untrained
10 10 1.485 9.826 - 9.927 9.983 9.768

100 14 11.47 - 26.95 10.18 11.83

100 10 3.348 19.86 - 20.71 21.17 20.12
100 29.07 32.61 - 81.47 22.87 30.26

trained
10 10 1.629 10.71 6.466 - 10.9 10.73

100 15.25 12.59 40.29 - 11.06 12.32

100 10 4.798 27.72 20.33 - 29.19 28.55
100 39.13 40.98 73.37 - 30.21 34.83

worst
case*

untrained
10 10 7.261 30.81 - 28.12 31.57 30.69

100 53.93 34.41 - 43.73 32.31 35.19

100 10 23.44 71.6 - 60.23 74.02 73.31
100 93.97 80.97 - 92.35 76.24 78.16

trained
10 10 7.564 31.94 25.27 - 32.67 31.61

100 55.35 35.6 54.19 - 33.37 36.88

100 10 24.83 73.63 70.5 - 75.26 73.17
100 92.98 80.67 87 - 76.62 83.33

* see Tables 14, 16 to know the transition probabilities used on each case.
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gray correspond to elements which are currently used for the autonomous navigation of the standard Thorvald II
(as the one shown in Fig. 2a) , while the rest of the components were included specifically for our HAN module.

Figure 11: Thorvald II robot with additional hardware components which are required to implement the proposed
HAN module.

The new hardware components include a second computer with a dedicated GPU placed on the top of the
robot with the aim of processing the data from RGB-D cameras, thermal cameras and 2D LiDARs. The aim of this
processing is to extract information from any human interacting with the robot and as illustrated in the diagram in
Fig. 12, this information is used as an input for a decision-making stage which based on HAN policies (defined by
the users) decide if a safety action (e.g safety stop, reduced speed, gesture control) is required or not during HRI.
Moreover, two LED beacon towers and a speaker are included to give audiovisual feedback to the humans about
what the robot decides to do. A detailed description of each component included in the proposal is presented in
the following subsections. 6

Figure 12: Overall architecture of the proposed HAN module.

5.2 Autonomous navigation standard components

To be able to navigate autonomously on footpaths or inside polytunnels, robust localization, precise motion con-
trol, and optimal route planning are required. These components are already part of the standard Thorvald II
navigation system and are briefly described below.

6The proposed HAN module is contained into a ROS package that can be found in https://github.com/LeonardoGuevara/
mesapro.
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5.2.1 Robot localization and motion control

The localization of the Thorvald II depends on the information provided by the robot odometry, the use of RTK
antennas for dual compassing [12], and the use of two 2D LiDARs which cover 360 degrees around the robot.
The localization based on GNSS information is sufficient to localize the robot in open spaces such as footpaths,
but when a higher precision is required (i.e., when moving along narrow rows within polytunnels), the LiDAR
information is essential to avoid the robot colliding with the external infrastructure [23]. In terms of motion control,
the robot movements inside polytunnels are constrained by the maneuverability space, making the robot able to
move only in backwards or forwards mode. On the other hand, when the robot is moving in open spaces outside
of polytunnels, the Thorvald II kinematic properties allow the robot to perform zero radius turns and move in
sideways mode. The piece of code used for the localization and motion control of the robot along the rows inside
the polytunnels was developed by the company SAGA robotics 7, which commercializes the Thorvald II platform
and which was a partner in the MeSAPro project. More information about the Thorvald II hardware and software
design can be found in [13, 14].

5.2.2 Topological navigation

To make the Thorvald II move autonomously from one point to another of the field, the route generation is based
on topological navigation planning. In this kind of navigation, the robot follows paths formed by sequences of
nodes in a topological map of the field. The nodes within this map are interconnected by edges that determine
the possible actions or movements that the robot is allowed to do to move towards a nearby node, and planning
consists of finding a path (in the graph-theorectic sense) through the graph composed of the nodes and edges.
For example, if the robot is located on an edge that connects two nodes inside the polytunnels, this means that
the robot is only allowed to move between nodes in the same row but never between different rows. This isn’t
a limitation outside polytunnels, where the robot can move to any node that make the route optimize a certain
criterion (typically the shortest distance to the goal). The topological navigation framework is contained in a
public ROS package that has been successfully applied in long-term autonomy application [4, 8]. In this work we
modified the original package to make it compatible with the HAN requirements as will be explained later 8.

5.3 Human sensing components

5.3.1 Human detection and tracking

The proposed human detection relies mainly on using color/depth images (taken from two RGB-D cameras),
and thermal images (taken from two thermal cameras aligned to the RGB-D cameras). However, the point cloud
generated by the 2D LiDARs (originally installed for robot localization purposes) can be used as an additional data
source. The Camera-based detection uses the OpenPose framework [6] to detect human centroids (by extracting
skeleton joints) in the RGB images and determine their positions with respect to the camera frame. Then, these
positions are mapped to the robot frame by using the depth image, and finally, the thermal image is used to reduce
the number of false-positives delivered by a pre-trainned skeleton extractor model. Basically, a human detection is
valid only if the pixels of the thermal image where the human centroid was detected satisfy a threshold of intensity.
Once a human has been continuously detected for a certain number of frames, the position of this human starts to
be tracked.

To complement the Camera-based detection, the LiDARs can also be used for human detection purposes. This
LiDAR-based detection is based on the work presented in [18] which uses the so-called Distance Robust Spatial-
Attention and Auto-regressive Model (DRSPAAM) to detect human legs in a 2D point cloud. This model was
pre-trained with data from indoor environments, thus in order to reduce the false positive detection rate due to
harsh lighting conditions outdoors and similarities between human legs and polytunnel infrastructure, a no go map
of the polytunnel infrastructure is required (see Fig. 13(b)). Once the legs detection has been filtered by the no go
map, the final step is to track the human position on time by using a particle filter as presented in [19, 3].

Figure 13(b) shows examples of the inputs, and outputs of the Camera-based skeleton detection (blue) and
LiDAR-based leg detection (red). The ability of LiDAR-based detection to cover 360 degrees around the robot,
while cameras have blind spots (as shown in Fig. 13(a)), is an argument for LiDAR-based detection being more
suitable to ensure human-aware safe navigation than Camera-based detection. On the other hand, Camera-based

7SAGA robotics website https://sagarobotics.com/.
8The modified topological navigation package used in this work can be found in https://github.com/LeonardoGuevara/

topological_navigation.git.

28

https://sagarobotics.com/
https://github.com/LeonardoGuevara/topological_navigation.git
https://github.com/LeonardoGuevara/topological_navigation.git


Figure 13: (a) Detection coverage areas according to the sensor used. (b) Inputs and outputs of the Camera-based
skeleton detector (blue) and the LiDAR-based leg detector (red).

detection is able to extract additional features such as hand gestures and determine the orientation of the person
detected (see Subsection 5.3.3). These additional features make the Camera-based detection suitable for enabling
a more efficient and smooth HRI than what is possible when only using position information.

As illustrated in Fig. 13(a), if the robot is moving inside the polytunnels, the cameras field of view allows
for detecting people in the same row (H1 and H2), while the LiDAR detection allows the robot to be aware of
people even in other rows (H3 and H4). When working inside the polytunnels, the human detection on the robot
sides is not mandatory since people in other rows are not considered in risk of collision, but it can be useful
when the robot is outside the polytunnels since in that case H3 and H4 may be at risk. Thus, in order to improve
the overall performance of human detection and keep continuous tracking, it is recommended to combine LiDAR-
based detection with Camera-based detection. In this way, if a person is no longer detected by the cameras because
of the blind spots on the side of the robot, the LiDAR can still track the person’s position and when he/she enters
the camera vision range again, the position information will be complemented by the gesture and orientation
information. The main problem of combining both detection systems is the computational cost since it requires
the second robot computer (the computer on the top of the robot) to run two algorithms based on convolutional
neural networks at the same time which is not suitable for long time periods in the kinds of high temperatures that
occur in polytunnels during harvesting. For this reason, to have a better idea of which kind of detection system
is more suitable for outdoors implementation, Table 7, shows a qualitative and quantitative comparison of the
human detection performance when using different combinations of sensor data. We compared 6 combinations,
starting from the ones which use a single kind of sensor data, and finishing with the fusion of all the available
sensor data. Overall, every combination shows a good detection performance in terms of accuracy and recall
metrics. However, the combinations which include LiDAR data, obtained a lower precision metric which means a
higher number of fake detections. This isn’t a problem if safety is the main goal since the robot will stop as soon as
any human is detected within unsafe distances. However, if efficiency and smoothness of the HRI is considered,
the excessive and unnecessary stops due to fake detections will cause stress and loss of trust on the human co-
workers. A good alternative to avoid this problem can be the use of RGBD + thermal data which although having
limited detention range, obtained the highest F-score, includes valuable human information necessary for HRI,
and is not computationally expensive (i.e. can be operated for long periods of time).

5.3.2 Human gesture recognition

As was mentioned above, the Camera-based detection uses OpenPose to detect human in the RGB images. How-
ever, the purpose of using OpenPose is not only human detection but also the extraction of human skeleton joints,
that later can be used for gesture recognition. In this context, we followed the ideas proposed in [30, 31], to con-
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Table 7: Comparison of human detection based on different sensor data.

Sensor
used

Sensor
detection

range

Sensor data
frequency

Data processing
requirements

Human
information

available

Human detection performance
Accuracy Precision Recall F-score

LiDAR 360 degrees 30fps Moderate
processing Position 0.9610 0.6738 0.9895 0.7922

RGBD blind spots 30fps Moderate
processing

Position,
gesture, and
orientation

0.9436 0.9355 0.9800 0.9395

RGBD
Thermal blind spots 9fps Moderate

processing

Position,
gesture, and
orientation

0.9431 0.9451 0.9779 0.9441

LiDAR
RGBD 360 degrees 30fps Computationally

expensive

Position,
gesture, and
orientation

0.9389 0.6301 1 0.7542

LiDAR
RGBD

Thermal
360 degrees

30fps
&

9fps

Computationally
expensive

Position,
gesture, and
orientation

0.9363 0.6701 1 0.7812

struct a feature vector made up of the relative distances from each skeleton joint to the neck joint and the angles
between consecutive joints. Since the size of the human in the frame may vary according to the distance from the
person to the camera, the features extracted on each frame must be normalized (see [30] for more details).

In situations when a human is too close to the camera, OpenPose is capable of extracting the human skeleton
even if some of the lower body joints are missing (not visible). However, we need to ensure that no important
joints are missing for gesture recognition, thus we decided to consider only upper body joints (red color in Fig.
14(a)) which are more likely to remain visible than the lower body joints (blue color in Fig. 14(a)). In this context,
we use the 15 upper body joints from the BODY 25 skeleton model which are transformed into a total of 28 features
including 15 distances from each joint to the neck joint and 13 angles between consecutive joints. Those are the
features we used as inputs to a Random Forest classifier [5] which was trained to classify 11 different hand gestures.
These hand gestures will later be interpreted by the robot as commands (see Subsection 5.4.4). Figure 14(b) shows
a sample image of each gesture with the name of the labels used for their training. To collect the data training
set, we recorded videos of a person performing every gesture (the same during the whole video) while moving in
front of the robot keeping a distance between 1.2m and 3.6m (i.e. within the social space).

Figure 14: (a) BODY 25 human skeleton estimation model showing upper body joints in red and the lower body
joints in blue. (b) Examples of every hand gesture that can be interpreted by the robot using only upper body
joints. (c) Examples of orientation inference based on missing head joints.

In total, the number of samples of each gesture label in the dataset was: no gesture (3384), left arm up (2997), left
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hand front (5602), left arm sideways (4666), left forearm sideways (3822), right arm up (4057), right hand front (2938), right
arm sideways (4610), right forearm sideways (3813), both arms up (4073), both hands front (3825). The gesture dataset was
split into training (70%) and testing (30%). Figure 15 summarizes the proposed gesture recognition performance
using a normalized confusion matrix. According to this matrix, the prediction results obtained from the Random
Forest classifier are shown to be very accurate for every gesture. These results may vary if the distance between
the robot and the person is higher than 3.6m, thus, we restricted the gesture recognition to the social zone since the
gesture control feature (see Subsection 5.4.4) is intended to be used in close distance interactions only.

Figure 15: Normalized confusion matrix of the gesture recognition using a Random Forest classifier.

5.3.3 Human orientation and motion inference

As an addition to the information of the position of the human and label for the hand gesture, the human detection
code also extracts information about the orientation of the detected human with respect to the robot and infers
whether the human intends to stay stationary. In order to infer the human orientation and deliver a resultant
label, the joints extracted by OpenPose are used once again. According to the head orientation, the OpenPose
output may deliver a different number of joints. This behavior allows us to easily infer the human orientation
by analyzing the joints that are not being detected. For instance, as is shown in Figure 14(c), the lack of the nose
joint determines if the human is facing the robot or giving the back to the robot, and the lack of a specific ear joint
determines if the human is detected from one side or another. The resultant orientation label is important to
address the consideration in SA4 which limits the robot to interact with a human only by facing them and never
moving when behind them. On the other hand, a label obtained from human motion inference is going to address
the consideration SA2. This inference is not aimed to predict future movements or infer the human intentions as
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a form of implicit communication. The purpose of this inference is simply make the robot stop if the human is
currently moving, .i.e. always giving priority to the human partner as was stated in SA2. In this context, the way
to infer the motion is extremely simple, the robot is continuously recording the displacement of humans tracked
(by using cameras and/or LiDARs) and computing the average speed within a time window. If the speed is higher
than a given threshold, then the motion label turns from mostly stationary to moving.

5.3.4 Collision detection

In the worst scenario, when a failure makes the robot not aware of an obstacle or human presence on time, the
robot also requires post-collision actions such as equipping it with soft coverings around the chassis to absorb the
energy of the impacts, and making the robot stop immediately to limit the injuries. With this aim, the Thorvald II
was equipped with 8 soft pads 9 which act as safety bumpers making the robot to activate an e-stop when a contact
is detected. As shown in Fig. 11, the pads where placed on the corners of the robot which are the most likely places
to produce injuries when a human worker is too close to the robot, especially outside polytunnels where the robot
can rotate or move sideways. The 8 AIRSKIN modules are connected in series ending in a connection box which
delivers a 24V signal when no collision is detected or 0V when a collision is detected. This signal is converted
to a digital signal using an optocoupler module in order to interfaces with an Arduino UNO. The Arduino UNO
monitors the digital signal and communicates with the second PC (on the top of the robot) by using the library
Rosserial Arduino.

5.4 Human-robot communication components

This Subsection describes the components of the proposed HAN module which allow the human workers to
receive audiovisual feedback from the robot operation, but also allows the robot to understand the intentions and
commands of the human workers.

5.4.1 Visual indicators

The Thorvald II was equipped with two LED beacon towers with three light colors to address the consideration
SA5. The activation of a specific visual indicator depends on three different factors: i) the robot current operation
(teleoperation or autonomous mode) ii) failures of any component of the HAN module iii) human presence and
HRI risk level (see Subsection 5.5.1). The Table 8 summarizes the visual indicators and a description of their
meaning. The colors and type of indicator (blinking or continuous) follow the standards described in [9] which
aim to make them as intuitive as possible for human workers without previous experience interacting with the
robot. For instance, since the color red is widely associated with emergency or danger situations, then, in our case,
it is used to warn the human that the robot operation is dangerous and they shouldn’t get closer to it while the
alert is still on. The second color is yellow, which is a popular beacon color used mainly to let the people know
they must proceed with care. Finally, since the color green is often associated with safety or go ahead, then, in our
case it is used to show that there is no risk of being harmed while interacting with the robot. The visual indicators
are activated by the same Arduino UNO that was used for collision detection, i.e., it receives the commands to
change the visual alerts via ROS by using the library Rosserial.

It is worth mentioning that the tower light that we used follows the standard design of vertical traffic lights
where each color is activated by a separate LED, with the red light located at the top and green light at the bottom.
Thus, people who suffer from colour blindness can distinguish the alerts by seeing which light is on rather than
by recognising the colors.

Table 8: A description of the indicators used as visual feedback for the human interacting with the robots.

Type Color Description

Continuous
Red It means that a human is detected in a danger zone, or

a collision was detected
Yellow It means that a human is detected in a warning zone
Green It means that a human is detected in a safe zone

Blinking
Red It means that there is a failure in a component of the HAN module

Yellow It means no human is detected when robot operates autonomously
Green It means that teleoperation mode is activated

9The pressure-sensitive sensors used for collision detection are commercialized by AIRSKIN https://www.airskin.io/airskin.
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5.4.2 Voice messages

The visual indicators mentioned above were implemented to increase the level of understanding of robot opera-
tions. Although visual feedback is a simple and intuitive way of communication in most of cases, its effectiveness
depends on the level of training people interacting with the robot. Thus, in order to increase the effectiveness of
Human-Robot Communication (HRC), we also incorporated a portable speaker to reproduce explicit voice mes-
sages that make people aware of robot current actions. In this way, independently of training level, the human
workers can be aware of what the robot intentions are. The library of voice messages consist on 11 pre-recorded
messages created using Wideo 10 in two languages: English (default) and Polish (optional). The second language
was incorporated since a large part of human labor in UK farms comes from eastern European countries such as
Poland and some of them do not speak English 11. The voice messages generated by the Wideo software aim to be
as natural and realistic as possible since according to [10], robots with human-sounding voices cause less stress to
humans than robots with synthetic-sounding voices.

5.4.3 Joystick teleoperation

The audiovisual alerts mentioned above create an unidirectional communication channel between the human and
the robot. However, a bidirectional communication is necessary for robot to be able to interpret what the human’s
actions or intentions are. The simplest way to accomplish this is by introducing a teleoperation mode in which
the robot can be controlled by a human operator. As in every commercial robotic platform, the standard version
of Thorvald II includes a teleoperation mode by using a joystick. When the teleoperation is activated, the human
operator is completely in charge of the robot actions, and it is mainly used for moving the robot from the storage
shed to the polytunnels. Once the robot is at the polytunnels, it can start operating in autonomous mode without
requiring the human operator.

5.4.4 Gesture control

The main problem with a typical teleoperation mode is that it is limited to a single person interaction (the one
who has the joystick). Thus, if multiple people are interacting with the robot at once, most of them are not able
to command the robot. To address this limitation, another teleoperation mechanism was implemented by using
hand gestures. This operation mode is called gesture control and uses the gesture labels mentioned in Subsection
5.3.2 to let the robot being controlled by any person who knows the specific hand gesture. Table 9 shows the
list of commands based on those gestures, including a description of their usage and their influence in terms of
topological navigation and velocity control. It is important to notice that depending on if a gesture is detected
inside or outside polytunnels, the command can make: i) the robot change the topological goal and continue
working autonomously or ii) continue with the current goal while the human commands the robot velocities as in
teleoperation mode.

In order to avoid unnecessary robot movements due to false positives in the gesture recognition, the gestures
are considered as valid commands only if: i) they have been continuously detected for a certain number of frames,
ii) the human performing the gesture is not giving the back to the robot, and iii) the robot is within the social space
of the person performing the gesture. The third condition is applied due to the skeleton joints extraction using
OpenPose is not reliable enough when the robot is outside the social space of a human that it has detected.

5.5 Decision-Making components

This Subsection describes the HAN policies, HRI risk level criteria, and robot operation modes used by the
decision-making stage shown in Fig.12.

5.5.1 HRI Risk levels

Figure 16 shows illustrative examples of the HRIs that may happen when the Thorvald II navigates inside the
polytunnels (left) and outside the polytunnels (right). In these examples, the robot shares the workspace with
three workers located at different distances. The risk of producing collisions in these examples is classified into
three levels or zones (represented by different colors): danger (red), warning (yellow) and safe (green). The risk level

10Wideo includes a text to speech software available for free at https://wideo.co/text-to-speech/.
11Examples of the audiovisual alerts implemented in the Thorvald II are shown at https://www.youtube.com/watch?v=

WLEGSuPtYJU.
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Table 9: Description of human commands that can be interpreted by the robot based on hand gesture recognition.

Command Corresponding
hand gesture Location Command

description
Topological
navigation

Velocity
control

Move towards
me

Right forearm
sideways

Polytunnels
Makes the robot start

reduced speed mode after
the gesture was detected

Updates
the goal automatic

Footpaths
Makes the robot operate

in reduced speed mode while
the gesture is being detected

Keeps the
current goal teleperated

Move away
from me

Left forearm
sideways

Polytunnels
Makes the robot

start normal mode after
the gesture was detected

Updates
the goal automatic

Footpaths
Makes the robot move
away while the gesture

is being detected

Keeps the
current goal teleperated

Stop
operation

Both hands
front

Polytunnels
and

Footpaths

Makes the robot
activate stop mode after
the gesture was detected

Keeps the
current goal none

Move to
your left

Right arm
sideways Footpaths

Makes the robot move
sideways while the gesture

is being detected

Keeps the
current goal teleperated

Move to
your right

Left arm
sideways Footpaths

Makes the robot move
sideways while the gesture

is being detected

Keeps the
current goal teleperated

Rotate
clockwise Right arm up Footpaths

Makes the robot rotate
while the gesture
is being detected

Keeps the
current goal teleperated

Rotate
counterclockwise Left arm up Footpaths

Makes the robot rotate
while the gesture
is being detected

Keeps the
current goal teleperated

in a certain situation is determined according to i) the robot location with respect to the polytunnels, ii) the human
location with respect to the current robot goal, and iii) the invasion of personal or social spaces.

According to the risk level, the robot operation changes in order to minimize the chances of having unwanted
physical contact. The robot operation modes will be described in detail later in Subsection 5.5.4. For now it is
important to understand why some of the HRI in Fig. 16 are considered within a danger zone but other not. For
instance, the human H2 and H3 they both are located 1m away from the robot (i.e. personal space), however only
H2 is considered to be in danger while H3 is within a safe zone. This is because the robot is constrained to navigate
inside the polytunnels only forward or backwards, thus there is not any chance to move sideways to another row
and collide with H3. On the other hand, when the robot is moving outside the polytunnels towards the collection
point, there is a chance to collide with people on its side as the example with H5. In the example outside the
polytunnels is also important to notice that although H6 is located at 2.5m from the robot (i.e. social space), it
is considered to be within a safe zone since the current robot path has location H4 as its goal. Thus, any person
detected in the opposite direction than the robot goal is considered to be at a safe zone since the robot is not going
to move in that direction.

5.5.2 Critical human selection

Since there are several human workers distributed within the field during the cooperative harvesting operations, it
is expected that at some point the robot will interact with more than one human worker at a time (as was illustrated
in Fig. 16), thus in case of detecting multiple humans, it is necessary to determine which human is the most critical
to be monitored by the robot. This task is called the critical human selection, and in this work we considered the
following considerations as priority criteria for selection:

CH1 If more than one person is detected nearby the robot and they are located in different risk zones, then: the
people within danger zone are considered as the highest priority, followed by people in warning zone and
finally people in safe zone as the last in priority order.

CH2 If more than one person is detected in the same risk zone, then: the closer the detected person is, the higher
the priority they have with respect with other people in the same zone.

CH3 If more than one person is detected in the warning zone, then: apart from the condition in CH2, if one person
is performing hand gestures then they have priority over another one who can be closer but not performing
hand gestures.
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Figure 16: Illustrative examples of possible HRIs that may happen when a Thorvald II is moving inside polytun-
nels (left), at footpaths next to the collection point (right).

5.5.3 HAN policies

The HAN policies can be divided into three different types: safety-aware policies, ergonomic-aware policies, and
efficiency-aware policies. Each kind of policy requires the robot to operate in different modes (see Subsection
5.5.4). For instance, the safety-aware policy aims to address the safety considerations mentioned in Subsection 3.3
by making the robot activate pre-collision and post-collision actions as follows:

SAP1 The robot must activate stop mode if at least one of the following conditions is met: i) the critical human is in
danger zone, ii) a collision was detected, iii) the critical human asked the robot to stop by using gesture control
mode iv) a failure is detected in a component of the HAN module.

SAP2 If the robot activated stop mode because a collision was detected, then the robot motors are locked, and can
be unlocked only manually by pressing a button on the robot.

SAP3 Once the robot is in stop mode it can be reactivated (i.e. start moving) only if no failure is detected in the
HAN module and the robot motors are unlocked. Moreover, one of the following conditions has to be met:
i) the critical human gives the robot a new goal or command it to move by using gesture control mode, ii) a
human picker asks the robot to move to his/her location (i.e. topological goal is updated).

The ergonomic-aware policies aims to make the robot interact with the critical human in a socially acceptable
way as follows:

EAP1 The robot can activate gesture control mode only if all the following conditions are met i) the critical human
is in the warning zone, ii) the critical human is facing the robot, iii) the critical human stays mostly stationary.

EAP2 When gesture control mode is activated inside polytunnels, only three commands are allowed: move towards
me, move away from me, and stop operation.

EAP3 When gesture control mode is activated inside polytunnels, the critical human only needs to perform a gesture
momentarily to make the robot move or stop.

EAP4 When gesture control mode is activated outside polytunnels, the critical human needs to perform a gesture
continuously to make the robot react accordingly.
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EAP5 Robots can move towards a critical human in reduced speed mode only if all the following conditions are met
i) the critical human isn’t in danger zone, ii) the critical human is facing the robot, iii) the critical human stays
mostly stationary, iv) the critical human asked the robot to move towards him/her by using gesture control
mode.

EAP6 When a robot is moving towards the critical human in reduced speed mode outside the polytunnels, the robot
must rotate until it is aligned to the critical human before starting moving towards them.

The efficiency-aware policies aim to reduce the non-productive times generated during prolonged safety stops
by reactivating the robot operation as follows:

EAP1 The robot activates pause mode when the critical human is in warning zone.

EAP2 Once the robot is in pause mode it can be automatically reactivated and resume the previous operation if the
critical human moves to a safe zone or no human is detected.

EAP3 If robot has been in stop mode for a long time (without receiving a new human command), then the robot
can decide if summarize the previous topological goal (if it was not reached) or move to the collection point.

5.5.4 Robot operation modes

The robot operation modes that are activated by the HAN decision-making can be split into the following modes:

• Normal mode: This is the default autonomous operation mode of the Thorvald II, which makes the robot
navigate between two topological nodes inside or outside the polytunnels without applying any specific
safety action apart from the audiovisual alerts that are always activated (as stated in SA5). This mode is
activated when no human is detected or when the critical human is in a safe zone.

• Teleoperation mode: This is the default teleoperation mode of the Thorvald II, which allows a human operator
to control it by using a joystick. Similar to normal mode, this mode does not apply any specific safety action
apart from the audiovisual alerts that make the operator aware of the current robot operation.

• Stop mode: This is the main safety action which aims to minimize the chances of cause injuries to human
co-workers. This mode is activated according to the policy SAP1. The robot can change to normal mode
when a human worker asks the robot to move to a new goal as stated in the policy SAP3. Moreover, if no
goal is given to the robot for a long time, the robot can decide to complete the previous route plan or decide
to move to the collection point as stated in EAP3. The decision of where to move depends on whether the
original route plan wasn’t completed before being stopping operation and if there is any worker occluding
the current robot path.

• Pause mode: This is an alternative version of the stop mode that makes the robot stop the current operation.
The main difference between stop mode and this mode is that the robot can automatically reactivate normal
mode following the policy EAP2, i.e. without receiving a human command or being waiting a long time for
a command as was required for stop mode.

• Gesture control mode: This is similar to the teleoperation mode in the sense that the robot is commanded by
a human operator. However, in the typical teleoperation mode, the robot velocity is manually controlled by
the operator commands, on the other hand, by using gesture control, the human operator can change/update
the robot topological goal while keeping the robot operating autonomously. For instance, when the robot
is moving inside polytunnels, the gesture control mode is activated, and according to the human command,
the robot can activate stop mode (keeping the same goal), or update the current topological goal to make the
robot move towards the human ( i.e. activating the reduced speed mode), or to make it move away from the
human (i.e. activating the normal mode).

• Reduced speed mode: This mode makes the robot to move towards the critical human by reducing its speed
till it stops completely when it reaches the personal space (addressing consideration SA3). This mode can be
activated only after a human worker performs a hand gesture as stated in policy EAP5, i.e. the robot is not
allowed to move towards any human without his/her consent.
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5.6 Experiments under real conditions: logistics case study

The Thorvald II platform with the proposed HAN module (see Fig. 11) was tested in a strawberry polytunnel
located at the Riseholme campus of the University of Lincoln, UK. Several experiments were performed in order
to cover both ideal situations (normal cases) and non-ideal situations (special cases) in the context of cooperative
harvesting 12. This section shows the results of some these experiments with the intention of illustrating the satis-
faction of the HAN policies defined in Subsection 5.5.3 and evaluating the user’s experience after interacting with
the robot. The experiments were performed during the UK harvesting season in 2022. Due to the high temperature
levels during this period (with peaks of almost 40 degrees Celsius in the polytunnels), it wasn’t possible to use
Camera-based + LiDAR-based human detection systems for long periods without having overheating problems.
For this reason, the experiments in this section show results of human sensing based only on RGB-D and ther-
mal cameras which had the best detection performance according to Table 7. The main downside of this choice
is the restricted detection range. Therefore, to mitigate the risk of colliding with people when they are in a blind
spot, every person who interacted with the robot was informed in advance that the robot had blind spots in this
configuration, and they were restricted to interact with the robot only from the front or the back.

5.6.1 Expected HRI inside polytunnels

The first experiment illustrates how the robot behaves when it has to interact with a picker (the one who sum-
moned the robot) to load/unload trays inside the polytunnel. Figure 17 shows the evolution in time of the most
important parameters related to the HRI, as well as snapshots of important moments during the whole experi-
ment. Snapshot A shows the robot approaching the picker, till it activates stop mode for safety reasons. In this
example, the safety stop was activated when the picker turned around, placing their back towards the robot as
illustrated in snapshot B (i.e. the policy EAP5 was not satisfied). Immediately after stopping, the robot activates a
voice message making the picker aware of the stop mode and asking for a new command from the picker. This is
when the picker answers the robot’s request by making the robot move toward them by performing a hand gesture
as shown in snapshot C. While the robot is approaching the picker, the reduced speed mode is activated, making
the robot’s linear velocity modulated according to the distance between them. The robot activates stop mode once
again when it reaches the personal space of the picker as shown in snapshot D. At that point, the picker can ap-
proach safely the robot and load/unload trays on it. Then, the robot can move away from the picker (having a
new topological goal) once the picker perform an specific hand gesture, however, as illustrated in snapshot F, any
hand gesture performed while not facing the robot is not considered since it doesn’t satisfy the conditions stated
in policy EAP1. Once the picker turns and faces the robot again, they can make the robot move away and also
make the robot stop by performing human gestures as illustrated in snapshots G and H respectively.

5.6.2 Expected HRI outside polytunnels

The second experiment illustrates how the robot behaves when it has to interact with a human worker to load/unload
trays at the collection points outside the polytunnels. Figure 18 shows snapshots of important moments during
the whole experiment. The experiment starts with the robot moving in normal mode towards the human location.
Then, the robot activates pause mode when reaches the social space of the human as illustrated in snapshot A. Im-
mediately after pausing the current operation, the robot activates a voice message making the human aware that
they are occluding the current robot’s path. At this point, the human worker can control the robot’s movements by
performing different hand gesture as illustrated in snapshots B, C, and D. As shown in Fig. 18(g), when the human
is no longer performing a hand gesture, the robot operation changes from gesture control mode to stop mode. As
shown in snapshot E, when the human asks the robot to move towards them, the reduced speed mode is activated,
making the robot reoriented in order to be facing the human (following the policy EAP6), and then modulating its
linear velocity according to the distance between them (see Fig. 18(e)). The robot activates stop mode once it enters
the human personal space (danger zone) as stated in policy SAP1. At that point, the picker can approach safely the
robot and load/unload trays on it as shown in snapshots F and G. Then, the robot can move away from the picker
once the picker performs a specific hand gesture as illustrated in snapshot H. It is important to notice that unlike
experiment 1, the gesture control mode outside the polytunnels does not modify the topological goal of the robot
but it directly controls the robot’s velocity commands.

12Videos of the experiments are available in https://youtu.be/x9O0CB1MV5k.
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Figure 17: Snapshots from experiment 1 showing the evolution in time of parameters including: (a) distance
between the robot and the picker (b) HRI risk level label (c) orientation label (d) motion label (e) robot linear and
angular velocities (f) robot operation mode (g) gesture label (h) robot topological goal.

5.7 User experience evaluation

The aim of the experiments in Subsection 5.6 was to illustrate the satisfaction of the HAN policies defined in
Subsection 5.5.3 in different situations that are expected to happen during cooperative harvesting operations.
These experiments were performed with people who knew very well how the proposed HAN module works,
i.e. they were familiar with the audiovisual alerts and the gesture control mode integrated into the HAN. However,
if we consider a real farm implementation, we will face the situation in which the robot has to share the workspace
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Figure 18: Snapshots from experiment 2 showing the evolution in time of parameters including: (a) distance
between the robot and the picker (b) HRI risk level label (c) orientation label (d) motion label (e) robot linear and
angular velocities (f) robot operation mode (g) gesture label (h) robot topological goal.

with human workers who don’t have previous experience interacting with robots. Thus, in order to evaluate how
safe the robot operation is perceived and how intuitive it is for new users, we performed similar experiments to
the ones presented before but now with a group of 15 individuals who didn’t have previous experience using the
HAN module 13. The experiments consisted of making each person interact freely with the robot (for a total of

13The experiments with human participants were approved by the Human Ethics Committee of the University of Lincoln (Ethics code
UoL2022 9510).
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Figure 19: Outcome of questions that participants were asked (all were answered on a five-point scale).

20-30 minutes) inside and outside the polytunnels in a similar way as was illustrated in experiments 1 to 3. Before
the experiments started, participants received a brief induction on how the robot operates and how to interact
safely with the robot. At the end of the experiment, each person received a questionnaire to fill out. The aim of
this questionnaire was to obtain metrics to evaluate the user experience in terms of: i) acceptance and suitability of
co-robots in harvesting operations, ii) safety and trust perception in HRI, iii) naturalness in HRC. Thus, according
to the answers given by the 15 participants involved in the experiments, we quantified the metrics mentioned
previously by using a five-point rating scale as can be seen in Fig. 19.

The aim of questions Q1-Q2 was to evaluate the overall level of suitability of the propose cooperative harvest-
ing strategy. According to the majority of participants’ responses, they didn’t feel uncomfortable or stressed out
by sharing the workspace with the robot, in fact, they thought the use of a robot for fruit transportation is very
helpful for reducing their physical workload and reducing non-productive times.

Questions Q3-Q6 focused on evaluating how safe and trustworthy robot operation was perceived to be by the
participants. According to their responses to Q3 and Q4, the HAN module successfully accomplished the goal
of ensuring safe operation, not only physically (by avoiding any collision) but psychologically by stopping its
operations before invading the participants’ personal space (as was stated in SA1). Moreover, according to the
responses to Q5 and Q6, for most of the participants, the robot behavior was considered socially acceptable, by
following the criteria given above such as giving priority to human during HRI (SA2), reducing velocity when
moving towards a human (SA3), and only approach him/her when the human is facing the robot (SA4).

Finally, questions Q7-Q9 aimed to evaluate how natural and intuitive the proposed audiovisual feedback alerts
and gesture control mode are as HRC interfaces. Similar to the previous questions, the participant’s responses were
mostly positive (giving answers over 3) which means that they considered the audiovisual alerts clear enough to
be able to understand what the robot was doing or intended to do (as was stated in SA5). In the same way, the
proposed gesture control mode (which is used for getting a smooth HRI when human pickers load/unload trays),
was considered by the participants intuitive enough to let them able to learn how to use it after only a quick initial
training.

Figure 20 summarizes the information of the participants who were involved on these experiments. The par-
ticipants’ age covered the range of 18-42 years (see Fig. 20(a),) where 60% of them were male and the rest female
(see Fig. 20(b)). It is important to notice that not all the participants spoke English as their primary language (see
Fig. 20(c)), and that is something we expect to happen in real harvesting operations along UK were most of human
labor comes from different countries. Nevertheless, according to their responses to questions Q7-Q8, the language
barrier wasn’t an issue since the visual indicators and the default English voice messages were designed to be as
simple and clear as possible to make any person aware of the robot actions.

Then, Figures 20(d)(e) summarize the participants level of experience in terms of robotics and fruit harvesting.
Overall, most of the participants had certain previous experience with robots, while only few of them were fa-
miliar with the fruit harvesting process. This lack of agricultural expertise from the participants means that it not
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Figure 20: Summary of participants information including (a) age range (b) gender (c) primary language (d) expe-
rience level in robotics (e) experience level in fruit picking (f) HRC interface preferences.

possible to generalize the responses in Q2, however, it still represents a valid metric that evaluates the ergonomics
of the proposed HAN module which as far as our knowledge, it is the first time that HAN is implemented and
evaluated in real conditions. Some preliminary findings in terms of safety and ergonomics in cooperative harvest-
ing operations were presented in [2], but the experiments in that study only used teleoperated robots and no HAN
module or HRC interface was used to interact with the human pickers.

In fact, an intuitive HRC interface is crucial to increase the levels of safety, trust, and naturalness of any HRI.
For instance, according to the participants feedback, initially, some of them were not completely comfortable with
the use of hand gestures to control the robot, but as they were interacting with the robot, they commented that this
feature was becoming more natural and intuitive, thus, after a couple of minutes they were completely familiar
with the gesture control procedure. Additionally, as part of the user’s experience evaluation, the participants were
asked to choose their preference in terms of HRC interfaces among three suggested options. These options aim to
complement the existent hand gesture recognition feature to make the robot capable to better interpret the human
workers intentions when loading/unloading trays. The options included:

• Mobile app: Use of a mobile phone app to command the robot and to receive audio/vibratory feedback
according to the HRI risk level.

• Speech recognition: Give the robot the capability to understand voice commands.

• Implicit communication: Give the robot the capability of interpret the human intentions (implicitly) based on
my normal behavior/movements, i.e. without performing any special hand gesture or speech or using any
phone app.

According to the responses of the participants (see Fig. 20(f)), implicit communication and speech recognition
were chosen as the most attractive options for them. This choice was expected since they both are very natural
and simple HRC interfaces that do not require any additional device (as the third option) or special training (as
the hand gesture control).
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Table 10: List of variables used to model the agricultural tasks.

Variable
Name

Initial
Value

Possible
Values Description

Transitions
Previous values Next values

UV-C Logistics Picking UV-C Logistics Picking

x uvc 0

0 Robot at the shed 3 - - 1 - -

1 Robot moving from the shed
to polytunnel 0 - - 2 - -

2 Robot performing the UV-C treatment 1 - - 3 - -

3 Robot moving from polytunnel
to the shed 2 - - 0 - -

x logistics
x picking 0

0 Robot at the shed - 8 - 1

1 Robot moving from the shed to collection
point to place empty trays on it - 0 - 2

2 Robot interacting with the worker
who load empty trays on it - 1 - 3

3 Robot moving from collection
point to polytunnel - 2,7 - 4

4 Robot picking fruits along the rows
or only moving inside the polytunnel - 3,5 3 - 5 6

5 Robot interacting with the worker
who summoned it inside the polytunnel - 4 - - 4,6 -

6 Robot moving from polytunnel to
collection point to unload full trays - 5 4 - 7

7 Robot interacting with the
worker who unload full trays - 6 - 8

8 Robot moving from collection
point to robot shed - 7 - 0

x runs 0 0,1,2,...
Number of times that the robot
performed a two-way trip from

polytunnel to the collection point
- x runs-1 - x runs+1

N runs
The robot completed the maximum

number of runs before the robot
battery requires to be recharged

- N runs-1 - 0

x seg 0

0,1,2,...
Number of footpath segments
traversed by the robot before

reaching the goal point
N seg-1 N seg+1

N seg shed-
N seg collect

The robot traversed all the footpaths
segments between the shed and

the collection point, assuming that
N seg shed >N seg collect

N seg shed-
N seg collect-1

N seg shed-
N seg collect+1 0

N seg shed
Robot traversed all the footpaths

segments between the shed
and the polytunnel

N seg shed-1 0

N seg collect
Robot traversed all the footpaths

segments between the shed
and the polytunnel

N seg collect-1 N seg collect+1 0

x rows 0 0,1,2,... Number of rows traversed
by the robot N rows-1 - N rows+1 -

N rows Robot covered all the rows
in the polytunnel N rows-1 0

x trays 0 0,1,2,... Number of times the
robot replaced the trays - N trays-1 - N trays+1

N trays All the trays on the robot
are full of fruit N trays-1 0

Table 11: List of constants used to define the scale of the agricultural tasks.

Constant
Name

Possible
Values Description Related to

Variable

N rows 1,2,3,...
Number of rows that the robot is able to cover

before it has to come back to the robot shed
to charge the battery

x rows
x uvc

N seg shed 1,2,3,... Number of footpath segments required to be traversed
when moving from robot shed to the polytunnel

x seg
x uvc

x logistics
x picking

N seg collect 1,2,3,... Number of footpath segments required to be traversed
when moving from collection point to the polytunnel

x seg
x logistics
x picking

N runs 1,2,3,...
Number of times a robot can perform two-way trips

from polytunnel to collection point before
it has to come back to robot shed to charge the battery

x runs
x logistics
x picking

N trays 1,2,3,...
Number of times a robot can place full
trays on it before it has to come back

to collection point to replace with empty trays

x trays
x logistics
x picking
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Table 12: List of values that the variable x robot can take according to the agricultural scenario.

Variable
name

Initial
Value

Possible
Values Description

Transitions
Previous values Next values

UV-C Logistics Picking UV-C Logistics Picking

x robot 0

0 Robot operation is paused
(starting mode at the shed) 1 1 1 1 1 1

1 Robot moving along footpaths 2 2 2 2,3,10 2,3,8,10

2 Robot performing a transition
between footpath segments 1,9,10 1,3,10

3 Robot evading a human at footpaths 1,2 9,10

4 Robot moving along the row
performing UV-C treatment 7 - - 7,10 - -

5 Robot moving along a row
transporting trays - 7 - - 7,8,10 -

6 Robot moving along a row
while picking fruits - - 7 - - 7,10

7 Robot performing a transition
between rows 4,10 5,9,10 6,10 4,10 5,10 6,10

8 Robot approaching to the worker
position (reducing speed) - 1,5 - 9,10

9 Robot moving away from
the worker position 3 3,8 2,10 2,7,10 2,10

10 Robot stops because of
safety purposes 1,2,...,8,9 2,7

Table 13: List of variables used to model the safety system.

Variable
Name

Initial
Value

Possible
Values Description Transitions

Previous
values

Next
values

x hds 0

0 No human detected 1 1,2,3,4
1 Human detected when d > 7m 0,2 0,2,3,4
2 Human detected when 3.6m≤ d ≤ 7m 0,1,3 1,3
3 Human detected when 1.2m< d < 3.6m 0,1,2,4 2,4
4 Human detected when 0m< d ≤ 1.2m 0,1,2,3 3

x htmis 0
0 No human tracked 1,2 1*,2*
1 Accurate human motion inference 0 0
2 Not reliable human motion inference 0 0

x hars 0
0 No human gesture detected 1,2 1*,2*
1 Correct human gesture/action recognition 0 0
2 Wrong human gesture/action recognition 0 0

x scs 0
0 No contact 1,2 1*,2*
1 Collision is detected 0 0
2 Collision is not detected on time 0 0

x visual
x voice 0

0 Audiovisual alerts are not activated 1,2 1,2*

1 Audiovisual indicators are activated when
a human is detected 0,2 0

2 Periodic audiovisual indicators are activated
(even when there is not a human detected) 0 0,1

* : non-deterministic transition
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Table 14: List of constants used to define the probability of failure of each safety system component.

Constant
Name

Possible
Values

Cases evaluated Description Related to
Variableideal regular worst

p alerts [0,1] 0.9 0.7 0.5
Probability that at this specific moment a periodic

audiovisual alert is activated to warn
nearby human about danger

x visual
x voice

p scs [0,1] 0.1 0.3 0.5 Probability that the robot contact sensors
fails to detect a collision x hazard

p hds 1 [0,1] 0.3 0.4 0.5 Probability that HDS fails in detect a human
in the same row farther than 7m

x hds

p hds 2 [0,1] 0.2 0.3 0.4 Probability that HDS fails in detect on time
a human at 7m in the same row

p hds 3 [0,1] 0.1 0.2 0.3 Probability that HDS fails in detect on time
a human at 3.6m in the same row

p hds 4 [0,1] 0.1 0.1 0.2 Probability that HDS fails in detect on time
a human at 1.2m in the same row

p hds 5 [0,1] 0.3 0.4 0.5
Probability that HDS fails in detect a human

at the end of the rows farther 7m
when the robot is going to perform row transitions

p hds 6 [0,1] 0.2 0.3 0.4
Probability that HDS fails in detect on time a human

at the end of the row at 7m
when the robot is going to perform row transitions

p hds 7 [0,1] 0.1 0.2 0.3
Probability that HDS fails in detect on time a human

at the end of the row at 3.6m
when the robot is going to perform row transitions

p hds 8 [0,1] 0.1 0.1 0.2
Probability that HDS fails in detect on time a human

at the end of the row at 1.2m
when the robot is going to perform row transitions

p hds 9 [0,1] 0.2 0.3 0.4 Probability that HDS fails in detect a human
on time in the same footpath above 3.6m

p hds 10 [0,1] 0.1 0.2 0.3 Probability that HDS fails in detect a human
on time in the same footpath at 3.6m

p hds 11 [0,1] 0.1 0.1 0.2 Probability that HDS fails in detect a human
on time in the same footpath at 1.2m

p htmis 1 [0,1] 0.1 0.2 0.3 Probability that HTMIS fails to track
accurately a human in the same row x htmis

p htmis 2 [0,1] 0.1 0.2 0.3 Probability that HTMIS fails to track
accurately a human in the same footpath

p hars [0,1] 0.1 0.2 0.3 Probability that the HARS fails to detect
the correct hand gesture x hars

Table 15: List of variables used to model the human behavior.

Variable
Name

Initial
Value

Possible
Values Description Transitions

Possible
Values

Previous
values

Next
values

x human 0
0 No human presence 1,2 1*,2*
1 Untrained human is interacting with the robot 0 0
2 Trained worker is interacting with the robot 0 0

x motion 0

0 Human stays stationary 0,1,2 1,2*,3*,4*
1 Human is moving to the robot position 0 0*,2*
2 Human is moving away from the robot position 0,1,3,4 0
3 Human approaching to the robot to place trays on it 0 2
4 Human walking next to the robot along the footpath 0 2

x aware 0 0 Human is not aware of robot presence or
potential danger of approaching to the robot 1 1*

1 Human is aware of robot intentions
or danger of approaching to the robot 0 0

x gesture 0 0 Human is not performing any specific hand gesture 1 1*

1 Human performing a hand gesture to make
the robot knows about his/her intentions 0 0

x dist 0

0 d >> 7m 1 1
1 d > 7m 0,2 0,2
2 3.6m ≤ d ≤ 7m 1,3 1,3
3 1.2m < d < 3.6m 2,4 2,4
4 0m < d ≤ 1.2m 3 3

* : non-deterministic transition
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Table 16: List of constants used to model the non-deterministic human behavior.

Constant
Name

Possible
Values

Cases evaluated Description Related to
Variableideal regular worst

p int 1 [0,1] 0,0.1,0.2,...,0.9,1 Probability that an unplanned interaction is going to happen
inside the polytunnels with an untrained person

x humanp int 2 [0,1] 0,0.1,0.2,...,0.9,1 Probability that an unplanned interaction is going to happen
inside the polytunnels with an trained worker

p int 3 [0,1] 0,0.1,0.2,...,0.9,1 Probability that an unplanned interaction is going to happen
outside the polytunnels with an untrained person

p int 4 [0,1] 0,0.1,0.2,...,0.9,1 Probability that an unplanned interaction is going to happen
outside the polytunnels with an trained worker

p aware 1 [0,1] 0.8 0.7 0.5 Probability that visual alerts are correctly interpreted
by untrained people x aware

p aware 2 [0,1] 0.9 0.8 0.5 Probability that visual alerts are correctly interpreted
by trained people

p aware 3 [0,1] 0.9 0.9 0.5 Probability that voice alerts are correctly interpreted
by trained and untrained people

p decision [0,1] 0.9 0.8 0.5 Probability that the human decides to perform
a risky movement or not x motion

p reply [0,1] 0.9 0.8 0.5 Probability that the human performs or not a hand gesture
to make the robot knows about his/her intentions x gesture
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